Nanomedicine in Gastric Cancer

  • Nayla Mouawad
  • Maguie El Boustani
  • Vincenzo Canzonieri
  • Isabella Caligiuri
  • Flavio RizzolioEmail author
Part of the Current Clinical Pathology book series (CCPATH)


In recent years, nanomedicine, which is the application of nanotechnology to medicine, has shown an unprecedented expansion with the development of new nanoparticles and is expected to significantly improve the diagnosis and treatment of deadly diseases, such as cancer. Patients with gastric cancer, a common form of cancer worldwide, suffer in part from the poor sensitivity and lack of specificity of conventional diagnostic methods and, conversely, from the small number of treatment options, which makes it difficult to treat. Nanoparticles have unique biological properties that can enhance the process of developing new drugs and provide many benefits to the diagnosis of gastric cancer. In this book chapter, we discuss the application of nanoparticles in three different fields: treatment, diagnostics, and theranostics of gastric cancer. First, we will discuss how nanoparticles function as carriers of chemotherapeutic drugs to increase their therapeutic index and how they can function as therapeutic agents in photodynamic, gene, and thermal therapy. Second, we will discuss the importance of nanoparticles as imaging agents that can be applied in systemic and locoregional imaging, for early detection and elucidation of circulating tumour cells (CTCs). Third, we will describe how nanoparticles can combine diagnosis and therapy as theranostic agents.


Nanomedicine Nanotechnology Nanoparticles Treatment Diagnostics Theranostics Gastric cancer Chemotherapy Photodynamic therapy Gene therapy Photothermal therapy Systemic imaging Locoregional imaging Early detection Biomarkers Circulating tumour cells 


  1. 1.
    Piazuelo MB, Correa P. Gastric cáncer: overview. Colomb Med (Cali, Colomb). 2013;44:192–201.Google Scholar
  2. 2.
    Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther. 2009;1:1–4.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Folkman J, Parris EE, Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267:10931–4.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47:3039–51.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Koo H, Huh MS, Sun I-C, Yuk SH, Choi K, Kim K, Kwon IC. In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res. 2011;44:1018–28.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–207.CrossRefGoogle Scholar
  8. 8.
    Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–54.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Niederhuber JE. Developmental biology, self-renewal, and cancer. Lancet Oncol. 2007;8:456–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97–110.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–71.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Li KCP, Pandit SD, Guccione S, Bednarski MD. Molecular imaging applications in nanomedicine. Biomed Microdevices. 2004;6(6):113.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Narayana A. Applications of nanotechnology in cancer: a literature review of imaging and treatment. J Nucl Med Radiat Ther. 2014;5:1–9.CrossRefGoogle Scholar
  14. 14.
    Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin. 2013;63:395–418.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Palazzolo S, Bayda S, Hadla M, Caligiuri I, Corona G, Toffoli G, Rizzolio F. The clinical translation of organic nanomaterials for cancer therapy: a focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr Med Chem. 2017;24:1.Google Scholar
  16. 16.
    Gmeiner WH, Ghosh S. Nanotechnology for cancer treatment. Nanotechnol Rev. 2015;3:111–22.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ajani JA, Bentrem DJ, Besh S, D’Amico TA, Das P, Denlinger C, Fakih MG, Fuchs CS, Gerdes H, Glasgow RE, Hayman JA, Hofstetter WL, Ilson DH, Keswani RN, Kleinberg LR, Korn WM, Lockhart AC, Meredith K, Mulcahy MF, Orringer MB, Posey JA, Sasson AR, Scott WJ, Strong VE, Varghese TK, Warren G, Washington MK, Willett C, Wright CD, McMillian NR, Sundar H, National Comprehensive Cancer Network. Gastric cancer, version 2.2013: featured updates to the NCCN Guidelines. J Natl Compr Cancer Netw. 2013;11:531–46.CrossRefGoogle Scholar
  18. 18.
    Yuan M, Yang Y, Lv W, Song Z, Zhong H. Paclitaxel combined with capecitabine as first-line chemotherapy for advanced or recurrent gastric cancer. Oncol Lett. 2014;8:351–4.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schöffski P. New drugs for treatment of gastric cancer. Ann Oncol Off J Eur Soc Med Oncol. 2002;13(Suppl 4):13–22.CrossRefGoogle Scholar
  20. 20.
    Li Q, Boyer C, Lee JY, Shepard HM. A novel approach to thymidylate synthase as a target for cancer chemotherapy. Mol Pharmacol. 2001;59:446–52.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Meriggi F, Di Biasi B, Caliolo C, Zaniboni A. The potential role of pemetrexed in gastrointestinal cancer. Chemotherapy. 2008;54:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM, Andreozzi F, Ventriglia J, Savastano B, Mabilia A, Lieto E, Ciardiello F, De Vita F. Treatment of gastric cancer. World J Gastroenterol. 2014;20:1635–49.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Caponigro F, Facchini G, Nasti G, Iaffaioli RV. Gastric cancer. Treatment of advanced disease and new drugs. Front Biosci. 2005;10:3122–6.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Johnstone TC, Park GY, Lippard SJ. Understanding and improving platinum anticancer drugs–phenanthriplatin. Anticancer Res. 2014;34:471–6.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Palacio S, Loaiza-Bonilla A, Kittaneh M, Kyriakopoulos C, Ochoa RE, Escobar M, Arango B, Restrepo MH, Merchan JR, Rocha Lima CMSR, Hosein PJ. Successful use of Trastuzumab with anthracycline-based chemotherapy followed by trastuzumab maintenance in patients with advanced HER2-positive gastric cancer. Anticancer Res. 2014;34:301–6.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Park S, Woo Y, Kim H, Lee YC, Choi S, Hyung WJ, Noh SH. In vitro adenosine triphosphate based chemotherapy response assay in gastric cancer. J Gastric Cancer. 2010;10:155–61.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pommier Y. Drugging topoisomerases: lessons and challenges. ACS Chem Biol. 2013;8:82–95.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kang BW, Kim JG, Kwon O-K, Chung HY, Yu W. Non-platinum-based chemotherapy for treatment of advanced gastric cancer: 5-fluorouracil, taxanes, and irinotecan. World J Gastroenterol. 2014;20:5396–402.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kang Y-K, Chang H-M, Yook JH, Ryu M-H, Park I, Min YJ, Zang DY, Kim GY, Yang DH, Jang SJ, Park YS, Lee J-L, Kim TW, Oh ST, Park BK, Jung H-Y, Kim BS. Adjuvant chemotherapy for gastric cancer: a randomised phase 3 trial of mitomycin-C plus either short-term doxifluridine or long-term doxifluridine plus cisplatin after curative D2 gastrectomy (AMC0201). Br J Cancer. 2013;108:1245–51.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tsuburaya A, Yoshida K, Kobayashi M, Yoshino S, Takahashi M, Takiguchi N, Tanabe K, Takahashi N, Imamura H, Tatsumoto N, Hara A, Nishikawa K, Fukushima R, Nozaki I, Kojima H, Miyashita Y, Oba K, Buyse M, Morita S, Sakamoto J. Sequential paclitaxel followed by tegafur and uracil (UFT) or S-1 versus UFT or S-1 monotherapy as adjuvant chemotherapy for T4a/b gastric cancer (SAMIT): a phase 3 factorial randomised controlled trial. Lancet Oncol. 2014;15:886–93.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Van Cutsem E. The treatment of advanced gastric cancer: new findings on the activity of the taxanes. Oncologist. 2004;9(Suppl 2):9–15.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Schulte N, Ebert MP, Härtel N. Gastric cancer: new drugs – new strategies. Gastrointest Tumors. 2014;1:180–94.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Carr C, Ng J, Wigmore T. The side effects of chemotherapeutic agents. Curr Anaesth Crit Care. 2008;19:70–9.CrossRefGoogle Scholar
  35. 35.
    Kehrer DF, Soepenberg O, Loos WJ, Verweij J, Sparreboom A. Modulation of camptothecin analogs in the treatment of cancer: a review. Anti-Cancer Drugs. 2001;12:89–105.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Muggia FM, Burris HA. Clinical development of topoisomerase-interactive drugs. Adv Pharmacol. 1994;29B:1–31.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Slichenmyer WJ, Rowinsky EK, Donehower RC, Kaufmann SH. The current status of camptothecin analogues as antitumor agents. J Natl Cancer Inst. 1993;85:271–91.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gaur S, Chen L, Yen T, Wang Y, Zhou B, Davis M, Yen Y. Preclinical study of the cyclodextrin-polymer conjugate of camptothecin CRLX101 for the treatment of gastric cancer. Nanomedicine. 2012;8:721–30.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Nabell L, Spencer S. Docetaxel with concurrent radiotherapy in head and neck cancer. Semin Oncol. 2003;30:89–93.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wang S-C, Chen F-L, Lin W-L, Wang P-H, Han C-P. Cytokeratin 8/18 monoclonal antibody was dissimilar to anti-cytokeratin CAM 5.2. Comment on: A randomized phase III study of adjuvant platinum/docetaxel chemotherapy with or without radiation therapy in patients with gastric cancer. Cancer Chemother Pharmacol. 2011;67:243–4; author reply 245.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Sen F, Saglam EK, Toker A, Dilege S, Kizir A, Oral EN, Saip P, Sakallioglu B, Topuz E, Aydiner A. Weekly docetaxel and cisplatin with concomitant radiotherapy in addition to surgery and/or consolidation chemotherapy in stage III non-small cell lung cancer. Cancer Chemother Pharmacol. 2011;68:1497–505.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Markman M. Managing taxane toxicities. Support Care Cancer. 2003;11:144–7.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Cui F-B, Li R-T, Liu Q, Wu P-Y, Hu W-J, Yue G-F, Ding H, Yu L-X, Qian X-P, Liu B-R. Enhancement of radiotherapy efficacy by docetaxel-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer. Cancer Lett. 2014;346:53–62.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Fuse N, Kuboki Y, Kuwata T, Nishina T, Kadowaki S, Shinozaki E, Machida N, Yuki S, Ooki A, Kajiura S, Kimura T, Yamanaka T, Shitara K, Nagatsuma AK, Yoshino T, Ochiai A, Ohtsu A. Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients. Gastric Cancer. 2016;19:183–91.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sakai K, Mori S, Kawamoto T, Taniguchi S, Kobori O, Morioka Y, Kuroki T, Kano K. Expression of epidermal growth factor receptors on normal human gastric epithelia and gastric carcinomas. J Natl Cancer Inst. 1986;77:1047–52.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Takehana T, Kunitomo K, Suzuki S, Kono K, Fujii H, Matsumoto Y, Ooi A. Expression of epidermal growth factor receptor in gastric carcinomas. Clin Gastroenterol Hepatol. 2003;1:438–45.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Pinto C, Di Fabio F, Siena S, Cascinu S, Rojas Llimpe FL, Ceccarelli C, Mutri V, Giannetta L, Giaquinta S, Funaioli C, Berardi R, Longobardi C, Piana E, Martoni AA. Phase II study of cetuximab in combination with FOLFIRI in patients with untreated advanced gastric or gastroesophageal junction adenocarcinoma (FOLCETUX study). Ann Oncol Off J Eur Soc Med Oncol. 2007;18:510–7.CrossRefGoogle Scholar
  48. 48.
    Sreeranganathan M, Uthaman S, Sarmento B, Mohan CG, Park I-K, Jayakumar R. In vivo evaluation of cetuximab-conjugated poly(γ-glutamic acid)-docetaxel nanomedicines in EGFR-overexpressing gastric cancer xenografts. Int J Nanomedicine. 2017;12:7165–82.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gao Z, Li Z, Yan J, Wang P. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug Des Devel Ther. 2017;11:2595–604.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    van Rees BP, Saukkonen K, Ristimäki A, Polkowski W, Tytgat GNJ, Drillenburg P, Offerhaus GJA. Cyclooxygenase-2 expression during carcinogenesis in the human stomach. J Pathol. 2002;196:171–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Shanmugam MK, Ong TH, Kumar AP, Lun CK, Ho PC, Wong PTH, Hui KM, Sethi G. Ursolic acid inhibits the initiation, progression of prostate cancer and prolongs the survival of TRAMP mice by modulating pro-inflammatory pathways. ed G C Jagetia. PLoS One. 2012;7:e32476.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Limami Y, Pinon A, Leger DY, Mousseau Y, Cook-Moreau J, Beneytout J-L, Delage C, Liagre B, Simon A. HT-29 colorectal cancer cells undergoing apoptosis overexpress COX-2 to delay ursolic acid-induced cell death. Biochimie. 2011;93:749–57.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Zhang H, Li X, Ding J, Xu H, Dai X, Hou Z, Zhang K, Sun K, Sun W. Delivery of ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2). Int J Pharm. 2013;441:261–8.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Salaun B, Coste I, Rissoan M-C, Lebecque SJ, Renno T. TLR3 can directly trigger apoptosis in human cancer cells. J Immunol. 2006;176:4894–901.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Paone A, Starace D, Galli R, Padula F, De Cesaris P, Filippini A, Ziparo E, Riccioli A. Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC-alpha-dependent mechanism. Carcinogenesis. 2008;29:1334–42.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Chiron D, Pellat-Deceunynck C, Amiot M, Bataille R, Jego G. TLR3 ligand induces NF-{kappa}B activation and various fates of multiple myeloma cells depending on IFN-{alpha} production. J Immunol. 2009;182:4471–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Yoneda K, Sugimoto K, Shiraki K, Tanaka J, Beppu T, Fuke H, Yamamoto N, Masuya M, Horie R, Uchida K, Takei Y. Dual topology of functional Toll-like receptor 3 expression in human hepatocellular carcinoma: differential signaling mechanisms of TLR3-induced NF-kappaB activation and apoptosis. Int J Oncol. 2008;33:929–36.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Besch R, Poeck H, Hohenauer T, Senft D, Häcker G, Berking C, Hornung V, Endres S, Ruzicka T, Rothenfusser S, Hartmann G. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest. 2009;119:2399–411.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Qu J, Hou Z, Han Q, Zhang C, Tian Z, Zhang J. Poly(I:C) exhibits an anti-cancer effect in human gastric adenocarcinoma cells which is dependent on RLRs. Int Immunopharmacol. 2013;17:814–20.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Nagini S. Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol. 2012;4:156–69.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Wong H, Yau T. Targeted therapy in the management of advanced gastric cancer: are we making progress in the era of personalized medicine? Oncologist. 2012;17:346–58.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Che X, Hokita S, Natsugoe S, Tanabe G, Baba M, Takao S, Aikou T. Tumor angiogenesis related to growth pattern and lymph node metastasis in early gastric cancer. Chin Med J. 1998;111:1090–3.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Martin-Richard M, Gallego R, Pericay C, Garcia Foncillas J, Queralt B, Casado E, Barriuso J, Iranzo V, Juez I, Visa L, Saigi E, Barnadas A, Garcia-Albeniz X, Maurel J. Multicenter phase II study of oxaliplatin and sorafenib in advanced gastric adenocarcinoma after failure of cisplatin and fluoropyrimidine treatment. A GEMCAD study. Investig New Drugs. 2013;31:1573–9.CrossRefGoogle Scholar
  64. 64.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2011;7:11–23.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zhang Z, Niu B, Chen J, He X, Bao X, Zhu J, Yu H, Li Y. The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials. 2014;35:4565–72.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ji J-L, Huang X-F, Zhu H-L. Curcumin and its formulations: potential anti-cancer agents. Anti Cancer Agents Med Chem. 2012;12:210–8.CrossRefGoogle Scholar
  67. 67.
    Shishodia S, Chaturvedi MM, Aggarwal BB. Role of curcumin in cancer therapy. Curr Probl Cancer. 2007;31:243–305.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Hahn Y-B, Ahmad R, Tripathy N. Chemical and biological sensors based on metal oxide nanostructures. Chem Commun (Camb). 2012;48:10369–85.CrossRefGoogle Scholar
  69. 69.
    Dhivya R, Ranjani J, Rajendhran J, Mayandi J, Annaraj J. Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Mater Sci Eng C Mater Biol Appl. 2018;82:182–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Xiao Y-F, Li J-M, Wang S-M, Yong X, Tang B, Jie M-M, Dong H, Yang X-C, Yang S-M. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression. Int J Nanomedicine. 2016;11:3023–34.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mi F-L, Tan Y-C, Liang H-F, Sung H-W. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials. 2002;23:181–91.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Qi L-F, Xu Z-R, Li Y, Jiang X, Han X-Y. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol. 2005;11:5136–41.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sun M, Zhou W, Zhang Y-Y, Wang D-L, Wu X-L. CD44+gastric cancer cells with stemness properties are chemoradioresistant and highly invasive. Oncol Lett. 2013;5:1793–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Takaishi S, Okumura T, Tu S, Wang SSW, Shibata W, Vigneshwaran R, Gordon SAK, Shimada Y, Wang TC. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27:1006–20.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhang C, Li C, He F, Cai Y, Yang H. Identification of CD44+CD24+ gastric cancer stem cells. J Cancer Res Clin Oncol. 2011;137:1679–86.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Chen T, Yang K, Yu J, Meng W, Yuan D, Bi F, Liu F, Liu J, Dai B, Chen X, Wang F, Zeng F, Xu H, Hu J, Mo X. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res. 2012;22:248–58.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Platt VM, Szoka FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5:474–86.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Fuchs D, Daniel V, Sadeghi M, Opelz G, Naujokat C. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem Biophys Res Commun. 2010;394:1098–104.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kusunoki S, Kato K, Tabu K, Inagaki T, Okabe H, Kaneda H, Suga S, Terao Y, Taga T, Takeda S. The inhibitory effect of salinomycin on the proliferation, migration and invasion of human endometrial cancer stem-like cells. Gynecol Oncol. 2013;129:598–605.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Wang Y. Effects of salinomycin on cancer stem cell in human lung adenocarcinoma A549 cells. Med Chem. 2011;7:106–11.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Dong T-T, Zhou H-M, Wang L-L, Feng B, Lv B, Zheng M-H. Salinomycin selectively targets “CD133+” cell subpopulations and decreases malignant traits in colorectal cancer lines. Ann Surg Oncol. 2011;18:1797–804.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138:645–59.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Yao H-J, Zhang Y-G, Sun L, Liu Y. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials. 2014;35:9208–23.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Shapira A, Davidson I, Avni N, Assaraf YG, Livney YD. β-Casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma: stability, target-activated release and cytotoxicity. Eur J Pharm Biopharm. 2012;80:298–305.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63:136–51.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Farokhzad OC. Using ligands to target cancer cells. Clin Adv Hematol Oncol. 2012;10:543–4.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Yoo J-W, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10:521–35.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487–92.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Irvine DJ, Swartz MA, Szeto GL. Engineering synthetic vaccines using cues from natural immunity. Nat Mater. 2013;12:978–90.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14:23–36.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Zhang L, Li R, Chen H, Wei J, Qian H, Su S, Shao J, Wang L, Qian X, Liu B. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int J Nanomedicine. 2017;12:2129–42.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Draghiciu O, Walczak M, Hoogeboom BN, Franken KLMC, Melief KJM, Nijman HW, Daemen T. Therapeutic immunization and local low-dose tumor irradiation, a reinforcing combination. Int J Cancer. 2014;134:859–72.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180:3132–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Röhl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher H-P. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173–8.CrossRefGoogle Scholar
  98. 98.
    Jagani H, Rao JV, Palanimuthu VR, Hariharapura RC, Gang S. A nanoformulation of siRNA and its role in cancer therapy: in vitro and in vivo evaluation. Cell Mol Biol Lett. 2013;18:120–36.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    de Fougerolles A, Vornlocher H-P, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6:443–53.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Ye Q-F, Zhang Y-C, Peng X-Q, Long Z, Ming Y-Z, He L-Y. Silencing Notch-1 induces apoptosis and increases the chemosensitivity of prostate cancer cells to docetaxel through Bcl-2 and Bax. Oncol Lett. 2012;3:879–84.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    BAI Z, ZHANG Z, QU X, HAN W, MA X. Sensitization of breast cancer cells to taxol by inhibition of taxol resistance gene 1. Oncol Lett. 2012;3:135–40.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine. 2012;7:3637–57.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol Off J Eur Soc Med Oncol. 2008;19:1523–9.CrossRefGoogle Scholar
  104. 104.
    Hofmann M, Stoss O, Shi D, Büttner R, van de Vijver M, Kim W, Ochiai A, Rüschoff J, Henkel T. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52:797–805.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Tanner M, Hollmén M, Junttila TT, Kapanen AI, Tommola S, Soini Y, Helin H, Salo J, Joensuu H, Sihvo E, Elenius K, Isola J. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol Off J Eur Soc Med Oncol. 2005;16:273–8.CrossRefGoogle Scholar
  106. 106.
    Bang Y-J, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Aprile G, Kulikov E, Hill J, Lehle M, Rüschoff J, Kang Y-K, ToGA Trial Investigators. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet (Lond Engl). 2010;376:687–97.CrossRefGoogle Scholar
  107. 107.
    Wu F-L, Zhang J, Li W, Bian B-X, Hong Y-D, Song Z-Y, Wang H-Y, Cui F-B, Li R-T, Liu Q, Jiang X-D, Li X-M, Zheng J-N. Enhanced antiproliferative activity of antibody-functionalized polymeric nanoparticles for targeted delivery of anti-miR-21 to HER2 positive gastric cancer. Oncotarget. 2017;8:67189–202.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Takahashi T, Saikawa Y, Kitagawa Y. Gastric cancer: current status of diagnosis and treatment. Cancers (Basel). 2013;5:48–63.CrossRefGoogle Scholar
  109. 109.
    Dicken BJ, Bigam DL, Cass C, Mackey JR, Joy AA, Hamilton SM. Gastric adenocarcinoma: review and considerations for future directions. Ann Surg. 2005;241:27–39.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Kuo C-Y, Chao Y, Li C-P. Update on treatment of gastric cancer. J Chin Med Assoc. 2014;77:345–53.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Proserpio I, Rausei S, Barzaghi S, Frattini F, Galli F, Iovino D, Rovera F, Boni L, Dionigi G, Pinotti G. Multimodal treatment of gastric cancer. World J Gastrointest Surg. 2014;6:55–8.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kilic L, Ordu C, Yildiz I, Sen F, Keskin S, Ciftci R, Pilanci KN. Current adjuvant treatment modalities for gastric cancer: from history to the future. World J Gastrointest Oncol. 2016;8:439–49.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Cui D, Jin G, Gao T, Sun T, Tian F, Estrada GG, Gao H, Sarai A. Characterization of BRCAA1 and its novel antigen epitope identification. Cancer Epidemiol Biomark Prev. 2004;13:1136–45.Google Scholar
  114. 114.
    Wang K, Ruan J, Qian Q, Song H, Bao C, Zhang X, Kong Y, Zhang C, Hu G, Ni J, Cui D. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. J Nanobiotechnol. 2011;9:23.CrossRefGoogle Scholar
  115. 115.
    Cui D, Zhang C, Liu B, Shu Y, Du T, Shu D, Wang K, Dai F, Liu Y, Li C, Pan F, Yang Y, Ni J, Li H, Brand-Saberi B, Guo P. Regression of gastric cancer by systemic injection of RNA nanoparticles carrying both ligand and siRNA. Sci Rep. 2015;5:10726.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Wu Y, Wang W, Chen Y, Huang K, Shuai X, Chen Q, Li X, Lian G. The investigation of polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro. Int J Nanomedicine. 2010;5:129–36.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Czupryna J, Tsourkas A. Suicide gene delivery by calcium phosphate nanoparticles: a novel method of targeted therapy for gastric cancer. Cancer Biol Ther. 2006;5:1691–2.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Wang JB, Liu LX. Use of photodynamic therapy in malignant lesions of stomach, bile duct, pancreas, colon and rectum. Hepato-Gastroenterology. 2007;54:718–24.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev. 2008;60:1627–37.CrossRefGoogle Scholar
  120. 120.
    Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991;54:659.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Hatz S, Lambert JDC, Ogilby PR. Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability. Photochem Photobiol Sci. 2007;6:1106–16.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Babu A, Periasamy J, Gunasekaran A, Kumaresan G, Naicker S, Gunasekaran P, Murugesan R. Polyethylene glycol-modified gelatin/polylactic acid nanoparticles for enhanced photodynamic efficacy of a hypocrellin derivative in vitro. J Biomed Nanotechnol. 2013;9:177–92.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Huang P, Wang S, Wang X, Shen G, Lin J, Wang Z, Guo S, Cui D, Yang M, Chen X. Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy. J Biomed Nanotechnol. 2015;11:117–25.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lee H-I, Kim Y-J. Enhanced cellular uptake of protoporphyrine IX/linolenic acid-conjugated spherical nanohybrids for photodynamic therapy. Colloids Surf B Biointerfaces. 2016;142:182–91.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Shimoyama A, Watase H, Liu Y, Ogura S, Hagiya Y, Takahashi K, Inoue K, Tanaka T, Murayama Y, Otsuji E, Ohkubo A, Yuasa H. Access to a novel near-infrared photodynamic therapy through the combined use of 5-aminolevulinic acid and lanthanide nanoparticles. Photodiagn Photodyn Ther. 2013;10:607–14.CrossRefGoogle Scholar
  126. 126.
    Sawamura T, Tanaka T, Ishige H, Iizuka M, Murayama Y, Otsuji E, Ohkubo A, Ogura S-I, Yuasa H. The effect of coatings on the affinity of lanthanide nanoparticles to MKN45 and HeLa cancer cells and improvement in photodynamic therapy efficiency. Int J Mol Sci. 2015;16:22415–24.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Li S, Chang K, Sun K, Tang Y, Cui N, Wang Y, Qin W, Xu H, Wu C. Amplified singlet oxygen generation in semiconductor polymer dots for photodynamic cancer therapy. ACS Appl Mater Interfaces. 2016;8:3624–34.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Glazer ES, Curley SA. The ongoing history of thermal therapy for cancer. Surg Oncol Clin N Am. 2011;20:229–35, vii.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;41:1578–86.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Yang M, Liu Y, Hou W, Zhi X, Zhang C, Jiang X, Pan F, Yang Y, Ni J, Cui D. Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer. Nanoscale. 2017;9:334–40.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Singh M, Harris-Birtill DCC, Zhou Y, Gallina ME, Cass AEG, Hanna GB, Elson DS. Application of gold nanorods for photothermal therapy in ex vivo human oesophagogastric adenocarcinoma. J Biomed Nanotechnol. 2016;12:481–90.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Wang K, Chen G, Hu Q, Zhen Y, Li H, Chen J, Di B, Hu Y, Sun M, Oupický D. Self-assembled hemoglobin nanoparticles for improved oral photosensitizer delivery and oral photothermal therapy in vivo. Nanomedicine (Lond). 2017;12:1043–55.CrossRefGoogle Scholar
  133. 133.
    Li J-L, Hou X-L, Bao H-C, Sun L, Tang B, Wang J-F, Wang X-G, Gu M. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. J Biomed Mater Res A. 2014;102:2181–8.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Imano M, Yasuda A, Itoh T, Satou T, Peng Y-F, Kato H, Shinkai M, Tsubaki M, Chiba Y, Yasuda T, Imamoto H, Nishida S, Takeyama Y, Okuno K, Furukawa H, Shiozaki H. Phase II study of single intraperitoneal chemotherapy followed by systemic chemotherapy for gastric cancer with peritoneal metastasis. J Gastrointest Surg. 2012;16:2190–6.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Ishigami H, Kitayama J, Kaisaki S, Hidemura A, Kato M, Otani K, Kamei T, Soma D, Miyato H, Yamashita H, Nagawa H. Phase II study of weekly intravenous and intraperitoneal paclitaxel combined with S-1 for advanced gastric cancer with peritoneal metastasis. Ann Oncol Off J Eur Soc Med Oncol. 2010;21:67–70.CrossRefGoogle Scholar
  136. 136.
    Ishigami H, Kitayama J, Kaisaki S, Yamaguchi H, Yamashita H, Emoto S, Nagawa H. Phase I study of biweekly intravenous paclitaxel plus intraperitoneal cisplatin and paclitaxel for gastric cancer with peritoneal metastasis. Oncology. 2010;79:269–72.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Zhang L, Zhao D. Applications of nanoparticles for brain cancer imaging and therapy. J Biomed Nanotechnol. 2014;10:1713–31.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol. 2015;88:20150207.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Ho D. Nanodiamond-based chemotherapy and imaging. Cancer Treat Res. 2015;166:85–102.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Ryu JH, Koo H, Sun I-C, Yuk SH, Choi K, Kim K, Kwon IC. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev. 2012;64:1447–58.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55:1919–22.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Li R, Wu W, Liu Q, Wu P, Xie L, Zhu Z, Yang M, Qian X, Ding Y, Yu L, Jiang X, Guan W, Liu B. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. ed R A de Mello. PLoS One. 2013;8:e69643.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Li R, Xie L, Zhu Z, Liu Q, Hu Y, Jiang X, Yu L, Qian X, Guo W, Ding Y, Liu B. Reversion of pH-induced physiological drug resistance: a novel function of copolymeric nanoparticles. ed V Bansal. PLoS One. 2011;6:e24172.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Li R, Li X, Xie L, Ding D, Hu Y, Qian X, Yu L, Ding Y, Jiang X, Liu B. Preparation and evaluation of PEG-PCL nanoparticles for local tetradrine delivery. Int J Pharm. 2009;379:158–66.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine. 2016;12:287–307.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Liu W-F, Ji S-R, Sun J-J, Zhang Y, Liu Z-Y, Liang A-B, Zeng H-Z. CD146 expression correlates with epithelial-mesenchymal transition markers and a poor prognosis in gastric cancer. Int J Mol Sci. 2012;13:6399–406.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Barzi A, Lenz H-J. Angiogenesis-related agents in esophageal cancer. Expert Opin Biol Ther. 2012;12:1335–45.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Wang P, Qu Y, Li C, Yin L, Shen C, Chen W, Yang S, Bian X, Fang D. Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int J Nanomedicine. 2015;10:749–63.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Kulhari H, Pooja D, Rompicharla SVK, Sistla R, Adams DJ. Biomedical applications of trastuzumab: as a therapeutic agent and a targeting ligand. Med Res Rev. 2015;35:849–76.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Kataoka H, Mori Y, Shimura T, Nishie H, Natsume M, Mochizuki H, Hirata Y, Sobue S, Mizushima T, Sano H, Mizuno Y, Nakamura M, Hirano A, Tsuchida K, Adachi K, Seno K, Kitagawa M, Kawai T, Joh T. A phase II prospective study of the trastuzumab combined with 5-weekly S-1 and CDDP therapy for HER2-positive advanced gastric cancer. Cancer Chemother Pharmacol. 2016;77:957–62.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Fornaro L, Lucchesi M, Caparello C, Vasile E, Caponi S, Ginocchi L, Masi G, Falcone A. Anti-HER agents in gastric cancer: from bench to bedside. Nat Rev Gastroenterol Hepatol. 2011;8:369–83.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Chen T-J, Cheng T-H, Chen C-Y, Hsu SCN, Cheng T-L, Liu G-C, Wang Y-M. Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J Biol Inorg Chem. 2009;14:253–60.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Jang M, Yoon YI, Kwon YS, Yoon T-J, Lee HJ, Hwang SI, Yun BL, Kim SM. Trastuzumab-conjugated liposome-coated fluorescent magnetic nanoparticles to target breast cancer. Korean J Radiol. 2014;15:411–22.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Rajagopal I, Niveditha SR, Sahadev R, Nagappa PK, Rajendra SG. HER 2 expression in gastric and gastro-esophageal junction (GEJ) adenocarcinomas. J Clin Diagn Res. 2015;9:EC06–10.PubMedPubMedCentralGoogle Scholar
  155. 155.
    De Carli DM, da Rocha MP, Antunes LCM, Fagundes RB. Immunohistochemical expression of HER2 in adenocarcinoma of the stomach. Arq Gastroenterol. 2015;52:152–5.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Zhang X, Pan L, Gao G, Fu H, Fu S, Song H, Zhi X, Ni J, Cui D. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnol. 2013;11:17.CrossRefGoogle Scholar
  157. 157.
    Cheng C-C, Huang C-F, Ho A-S, Peng C-L, Chang C-C, Mai F-D, Chen L-Y, Luo T-Y, Chang J. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine. 2013;8:1385–91.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Jian-Hui C, Shi-Rong C, Hui W, Si-le C, Jian-Bo X, Er-Tao Z, Chuang-Qi C, Yu-Long H. Prognostic value of three different lymph node staging systems in the survival of patients with gastric cancer following D2 lymphadenectomy. Tumour Biol. 2016;37:11105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Kang W-M, Meng Q-B, Yu J-C, Ma Z-Q, Li Z-T. Factors associated with early recurrence after curative surgery for gastric cancer. World J Gastroenterol. 2015;21:5934–40.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Qiao R, Liu CC, Liu M, Hu H, Liu CC, Hou Y, Wu K, Lin Y, Liang J, Gao M. Ultrasensitive in vivo detection of primary gastric tumor and lymphatic metastasis using upconversion nanoparticles. ACS Nano. 2015;9:2120–9.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Tatsumi Y, Tanigawa N, Nishimura H, Nomura E, Mabuchi H, Matsuki M, Narabayashi I. Preoperative diagnosis of lymph node metastases in gastric cancer by magnetic resonance imaging with ferumoxtran-10. Gastric Cancer. 2006;9:120–8.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Wang M, Abbineni G, Clevenger A, Mao C, Xu S. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine. 2011;7:710–29.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Tummers QRJG, Boogerd LSF, de Steur WO, Verbeek FPR, Boonstra MC, Handgraaf HJM, Frangioni JV, van de Velde CJH, Hartgrink HH, Vahrmeijer AL. Near-infrared fluorescence sentinel lymph node detection in gastric cancer: a pilot study. World J Gastroenterol. 2016;22:3644–51.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Hoshino I, Maruyama T, Fujito H, Tamura Y, Suganami A, Hayashi H, Toyota T, Akutsu Y, Murakami K, Isozaki Y, Akanuma N, Takeshita N, Toyozumi T, Komatsu A, Matsubara H. Detection of peritoneal dissemination with near-infrared fluorescence laparoscopic imaging using a liposomal formulation of a synthesized indocyanine green liposomal derivative. Anticancer Res. 2015;35:1353–9.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm. 2015;482:2–10.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Hill TK, Mohs AM. Image-guided tumor surgery: will there be a role for fluorescent nanoparticles? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:498–511.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Yaseen MA, Yu J, Jung B, Wong MS, Anvari B. Biodistribution of encapsulated indocyanine green in healthy mice. Mol Pharm. 2009;6:1321–32.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Hill TK, Abdulahad A, Kelkar SS, Marini FC, Long TE, Provenzale JM, Mohs AM. Indocyanine green-loaded nanoparticles for image-guided tumor surgery. Bioconjug Chem. 2015;26:294–303.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Ma Y, Tong S, Bao G, Gao C, Dai Z. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials. 2013;34:7706–14.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Tsujimoto H, Morimoto Y, Takahata R, Nomura S, Yoshida K, Horiguchi H, Hiraki S, Ono S, Miyazaki H, Saito D, Hara I, Ozeki E, Yamamoto J, Hase K. Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer. Cancer Sci. 2014;105:1626–30.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Hara E, Makino A, Kurihara K, Sugai M, Shimizu A, Hara I, Ozeki E, Kimura S. Evasion from accelerated blood clearance of nanocarrier named as ‘Lactosome’ induced by excessive administration of Lactosome. Biochim Biophys Acta. 2013;1830:4046–52.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Fan X, Wang L, Guo Y, Tong H, Li L, Ding J, Huang H. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft. Nanotechnology. 2013;24:325102.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Zavaleta CL, Garai E, Liu JTC, Sensarn S, Mandella MJ, Van de Sompel D, Friedland S, Van Dam J, Contag CH, Gambhir SS. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci U S A. 2013;110:E2288–97.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Aroca RF. Surface-enhanced infrared spectroscopy surface-enhanced vibrational spectroscopy. Chichester: Wiley; 2007. p. 185–222.CrossRefGoogle Scholar
  175. 175.
    Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Aroca RF. Plasmon enhanced spectroscopy. Phys Chem Chem Phys. 2013;15:5355–63.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2:282–9.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Pieczonka NPW, Aroca RF. Single molecule analysis by surfaced-enhanced Raman scattering. Chem Soc Rev. 2008;37:946–54.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Wang Y, Irudayaraj J. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368:20120026.CrossRefGoogle Scholar
  180. 180.
    Liu H, Zhang L, Lang X, Yamaguchi Y, Iwasaki H, Inouye Y, Xue Q, Chen M. Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci Rep. 2011;1:112.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Chen Y, Chen G, Zheng X, He C, Feng S, Chen Y, Lin X, Chen R, Zeng H. Discrimination of gastric cancer from normal by serum RNA based on surface-enhanced Raman spectroscopy (SERS) and multivariate analysis. Med Phys. 2012;39:5664–8.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Feng S, Chen R, Lin J, Pan J, Wu Y, Li Y, Chen J, Zeng H. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron. 2011;26:3167–74.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Feng S, Pan J, Wu Y, Lin D, Chen Y, Xi G, Lin J, Chen R. Study on gastric cancer blood plasma based on surface-enhanced Raman spectroscopy combined with multivariate analysis. Sci China Life Sci. 2011;54:828–34.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83–90.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Nguyen AH, Sim SJ. Nanoplasmonic biosensor: detection and amplification of dual bio-signatures of circulating tumor DNA. Biosens Bioelectron. 2015;67:443–9.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Wang YW, Kang S, Khan A, Bao PQ, Liu JTC. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed Opt Express. 2015;6:3714–23.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Wang YW, Khan A, Leigh SY, Wang D, Chen Y, Meza D, Liu JTC. Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus. Biomed Opt Express. 2014;5:2883–95.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Perfézou M, Turner A, Merkoçi A. Cancer detection using nanoparticle-based sensors. Chem Soc Rev. 2012;41:2606–22.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Vilela D, González MC, Escarpa A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Anal Chim Acta. 2012;751:24–43.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Baker GA, Moore DS. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem. 2005;382:1751–70.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Salvati E, Stellacci F, Krol S. Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine. 2015;10:3495–512.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009;20:55–62.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Hayat A, Catanante G, Marty J. Current trends in nanomaterial-based amperometric biosensors. Sensors. 2014;14:23439–61.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Swierczewska M, Liu G, Lee S, Chen X. High-sensitivity nanosensors for biomarker detection. Chem Soc Rev. 2012;41:2641–55.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Shiddiky MJA, Rauf S, Kithva PH, Trau M. Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers. Biosens Bioelectron. 2012;35:251–7.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Huang S, Zhu F, Qiu H, Xiao Q, Zhou Q, Su W, Hu B. A sensitive quantum dots-based “OFF-ON” fluorescent sensor for ruthenium anticancer drugs and ctDNA. Colloids Surf B Biointerfaces. 2014;117:240–7.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Wittrup A, Zhang S-H, Svensson KJ, Kucharzewska P, Johansson MC, Morgelin M, Belting M. Magnetic nanoparticle-based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery. Proc Natl Acad Sci. 2010;107:13342–7.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, Hochberg FH, Breakefield XO, Lee H, Weissleder R. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015;6:6999.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Muluneh M, Issadore D. Microchip-based detection of magnetically labeled cancer biomarkers. Adv Drug Deliv Rev. 2014;66:101–9.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Ravalli A, Marrazza G. Gold and magnetic nanoparticles-based electrochemical biosensors for cancer biomarker determination. J Nanosci Nanotechnol. 2015;15:3307–19.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Nie L, Liu F, Ma P, Xiao X. Applications of gold nanoparticles in optical biosensors. J Biomed Nanotechnol. 2014;10:2700–21.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Jena BK, Ghosh S, Bera R, Dey RS, Das AK, Raj CR. Bioanalytical applications of au nanoparticles. Recent Pat Nanotechnol. 2010;4:41–52.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Viswambari Devi R, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron. 2015;68:688–98.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13:40–6.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Kim S, Bawendi MG. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc. 2003;125:14652–3.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Zhang Y, Zhou D. Magnetic particle-based ultrasensitive biosensors for diagnostics. Expert Rev Mol Diagn. 2012;12:565–71.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Zhong Z, Wu W, Wang D, Wang D, Shan J, Qing Y, Zhang Z. Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron. 2010;25:2379–83.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Hou L, Wu X, Chen G, Yang H, Lu M, Tang D. HCR-stimulated formation of DNAzyme concatamers on gold nanoparticle for ultrasensitive impedimetric immunoassay. Biosens Bioelectron. 2015;68:487–93.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Chen H, Tang D, Zhang B, Liu B, Cui Y, Chen G. Electrochemical immunosensor for carcinoembryonic antigen based on nanosilver-coated magnetic beads and gold-graphene nanolabels. Talanta. 2012;91:95–102.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Ling S, Yuan R, Chai Y, Zhang T. Study on immunosensor based on gold nanoparticles/chitosan and MnO2 nanoparticles composite membrane/Prussian blue modified gold electrode. Bioprocess Biosyst Eng. 2009;32:407–14.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Das J, Kelley SO. Protein detection using arrayed microsensor chips: tuning sensor footprint to achieve ultrasensitive readout of CA-125 in serum and whole blood. Anal Chem. 2011;83:1167–72.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Tang D, Su B, Tang J, Ren J, Chen G. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal Chem. 2010;82:1527–34.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Wu D, Guo Z, Liu Y, Guo A, Lou W, Fan D, Wei Q. Sandwich-type electrochemical immunosensor using dumbbell-like nanoparticles for the determination of gastric cancer biomarker CA72-4. Talanta. 2015;134:305–9.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Chun L, Kim S-E, Cho M, Choe W, Nam J, Lee DW, Lee Y. Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode. Sensors Actuators B Chem. 2013;186:446–50.CrossRefGoogle Scholar
  215. 215.
    Căinap C, Nagy V, Gherman A, Cetean S, Laszlo I, Constantin A-M, Căinap S. Classic tumor markers in gastric cancer. Current standards and limitations. Clujul Med. 2015;88:111.PubMedPubMedCentralGoogle Scholar
  216. 216.
    Jokerst JV, Raamanathan A, Christodoulides N, Floriano PN, Pollard AA, Simmons GW, Wong J, Gage C, Furmaga WB, Redding SW, McDevitt JT. Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens Bioelectron. 2009;24:3622–9.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Khazanov E, Yavin E, Pascal A, Nissan A, Kohl Y, Reimann-Zawadzki M, Rubinstein A. Detecting a secreted gastric cancer biomarker molecule by targeted nanoparticles for real-time diagnostics. Pharm Res. 2012;29:983–93.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Daneshpour M, Omidfar K, Ghanbarian H. A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a. Beilstein J Nanotechnol. 2016;7:2023–36.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Lin M, Chen J-F, Lu Y-T, Zhang Y, Song J, Hou S, Ke Z, Tseng H-R. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res. 2014;47:2941–50.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Myung JH, Tam KA, Park S, Cha A, Hong S. Recent advances in nanotechnology-based detection and separation of circulating tumor cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:223–39.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Wang H-Y, Wei J, Zou Z-Y, Qian X-P, Liu B-R. Circulating tumour cells predict survival in gastric cancer patients: a meta-analysis. Współczesna Onkol. 2015;6:451–7.CrossRefGoogle Scholar
  222. 222.
    Yoon HJ, Kozminsky M, Nagrath S. Emerging role of nanomaterials in circulating tumor cell isolation and analysis. ACS Nano. 2014;8:1995–2017.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Bhana S, Wang Y, Huang X. Nanotechnology for enrichment and detection of circulating tumor cells. Nanomedicine. 2015;10:1973–90.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Chen Z, Hong G, Wang H, Welsher K, Tabakman SM, Sherlock SP, Robinson JT, Liang Y, Dai H. Graphite-coated magnetic nanoparticle microarray for few-cells enrichment and detection. ACS Nano. 2012;6:1094–101.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Hou S, Zhao L, Shen Q, Yu J, Ng C, Kong X, Wu D, Song M, Shi X, Xu X, OuYang W-H, He R, Zhao X-Z, Lee T, Brunicardi FC, Garcia MA, Ribas A, Lo RS, Tseng H-R. Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angew Chem Int Ed. 2013;52:3379–83.CrossRefGoogle Scholar
  226. 226.
    Lee HJ, Cho H-Y, Oh JH, Namkoong K, Lee JG, Park J-M, Lee SS, Huh N, Choi J-W. Simultaneous capture and in situ analysis of circulating tumor cells using multiple hybrid nanoparticles. Biosens Bioelectron. 2013;47:508–14.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Galanzha EI, Shashkov EV, Kelly T, Kim J-W, Yang L, Zharov VP. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol. 2009;4:855–60.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Xu H, Aguilar ZP, Yang L, Kuang M, Duan H, Xiong Y, Wei H, Wang A. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials. 2011;32:9758–65.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Song E-Q, Hu J, Wen C-Y, Tian Z-Q, Yu X, Zhang Z-L, Shi Y-B, Pang D-W. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano. 2011;5:761–70.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    He R, Zhao L, Liu Y, Zhang N, Cheng B, He Z, Cai B, Li S, Liu W, Guo S, Chen Y, Xiong B, Zhao X-Z. Biocompatible TiO2 nanoparticle-based cell immunoassay for circulating tumor cells capture and identification from cancer patients. Biomed Microdevices. 2013;15:617–26.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Chou C-P, Chen Y-W, Liou G-G, Pan H-B, Tseng H-H, Hung Y-T. Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging. Int J Nanomed. 2015;10:6997.CrossRefGoogle Scholar
  232. 232.
    Chen Y, Lian G, Liao C, Wang W, Zeng L, Qian C, Huang K, Shuai X. Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J Gastroenterol. 2013;48:809–21.PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    Sumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine. 2008;3:137–40.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 2010;62:1052–63.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Muthu MS, Feng S-S. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin Drug Deliv. 2013;10:151–5.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Muthu MS, Singh S. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine. 2009;4:105–18.PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Muthu MS, Rajesh CV, Mishra A, Singh S. Stimulus-responsive targeted nanomicelles for effective cancer therapy. Nanomedicine. 2009;4:657–67.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Muthu MS, Leong DT, Mei L, Feng S-S. Nanotheranostics – application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4:660–77.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Mei L, Zhang Z, Zhao L, Huang L, Yang X-L, Tang J, Feng S-S. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev. 2013;65:880–90.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62:1064–79.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Ye Y, Chen X. Integrin targeting for tumor optical imaging. Theranostics. 2011;1:102–26.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Xu C, Zhao W. Nanoparticle-based monitoring of stem cell therapy. Theranostics. 2013;3:616–7.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc. 2015;135:536–9.PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Zhao J, Mi Y, Feng S-S. siRNA-based nanomedicine. Nanomedicine. 2013;8:859–62.PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Huang K, Yinting Chen W, wei-wei Wang G, Guoda Lian C, Chenchen Qian L, Lingyun Wang L, Linjuan Zeng C, Chengde Liao B, Biling Liang B, Bing Huang K, Shuai X-T. Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int J Nanomedicine. 2012;7:359.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Luo X, Peng X, Hou J, Wu S, Shen J, Wang L. Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int J Nanomedicine. 2017;12:5331–43.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Sun Z, Song X, Li X, Su T, Qi S, Qiao R, Wang F, Huan Y, Yang W, Wang J, Nie Y, Wu K, Gao M, Cao F. In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale. 2014;6:14343–53.PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Wang F-Q, Li P, Zhang J-P, Wang A-Q, Wei Q. A novel pH-sensitive magnetic alginate–chitosan beads for albendazole delivery. Drug Dev Ind Pharm. 2010;36:867–77.PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Ma H, Liu Y, Shi M, Shao X, Zhong W, Liao W, Xing MMQ. Theranostic, pH-responsive, doxorubicin-loaded nanoparticles inducing active targeting and apoptosis for advanced gastric cancer. Biomacromolecules. 2015;16:4022–31.PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Wu J, Shen Y, Jiang W, Jiang W, Shen Y. Magnetic targeted drug delivery carriers encapsulated with pH-sensitive polymer: synthesis, characterization and in vitro doxorubicin release studies. J Biomater Sci Polym Ed. 2016;27:1303–16.PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Huang P, Lin J, Wang X, Wang Z, Zhang C, He M, Wang K, Chen F, Li Z, Shen G, Cui D, Chen X. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012;24:5104–10.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Huang P, Li Z, Lin J, Yang D, Gao G, Xu C, Bao L, Zhang C, Wang K, Song H, Hu H, Cui D. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials. 2011;32:3447–58.PubMedCrossRefPubMedCentralGoogle Scholar
  253. 253.
    Tsujimoto H, Morimoto Y, Takahata R, Nomura S, Yoshida K, Hiraki S, Horiguchi H, Miyazaki H, Ono S, Saito D, Hara I, Ozeki E, Yamamoto J, Hase K. Theranostic photosensitive nanoparticles for lymph node metastasis of gastric cancer. Ann Surg Oncol. 2015;22:923–8.CrossRefGoogle Scholar
  254. 254.
    Lotfi-Attari J, Pilehvar-Soltanahmadi Y, Dadashpour M, Alipour S, Farajzadeh R, Javidfar S, Zarghami N. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr Cancer. 2017;69:1290–9.PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Mariano RN, Alberti D, Cutrin JC, Geninatti Crich S, Aime S. Design of PLGA based nanoparticles for imaging guided applications. Mol Pharm. 2014;11:4100–6.PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Chang Y-N, Zhang M, Xia L, Zhang J, Xing G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel). 2012;5:2850–71.CrossRefGoogle Scholar
  257. 257.
    Sharma A, Madhunapantula SV, Robertson GP. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin Drug Metab Toxicol. 2012;8:47–69.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol. 2013;3:163.CrossRefGoogle Scholar
  259. 259.
    Liu L, Ye Q, Lu M, Lo Y-C, Hsu Y-H, Wei M-C, Chen Y-H, Lo S-C, Wang S-J, Bain DJ, Ho C. A new approach to reduce toxicities and to improve bioavailabilities of platinum-containing anti-cancer nanodrugs. Sci Rep. 2015;5:10881.PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Chapman S, Dobrovolskaia M, Farahani K, Goodwin A, Joshi A, Lee H, Meade T, Pomper M, Ptak K, Rao J, Singh R, Sridhar S, Stern S, Wang A, Weaver JB, Woloschak G, Yang L. Nanoparticles for cancer imaging: the good, the bad, and the promise. Nano Today. 2013;8:454–60.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nayla Mouawad
    • 1
    • 2
  • Maguie El Boustani
    • 1
    • 3
  • Vincenzo Canzonieri
    • 1
    • 4
    • 5
    • 6
  • Isabella Caligiuri
    • 1
  • Flavio Rizzolio
    • 1
    • 7
    • 6
    Email author
  1. 1.Pathology Unit, Department of Translational ResearchIRCCS, CRO Aviano, National Cancer InstituteAvianoItaly
  2. 2.Department of PharmacyUniversity of PisaPisaItaly
  3. 3.Doctoral School in Molecular BiomedicineUniversity of TriesteTriesteItaly
  4. 4.Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
  5. 5.CRO Biobank, IRCCS, CRO Aviano, National Cancer InstituteAvianoItaly
  6. 6.Department of BiologyTemple UniversityPhiladelphiaUSA
  7. 7.Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVeniceItaly

Personalised recommendations