Advertisement

Profiling User Colour Preferences with BFI-44 Personality Traits

  • Magdalena Wieloch
  • Katarzyna Kabzińska
  • Dominik Filipiak
  • Agata Filipowska
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 339)

Abstract

Nowadays, a lot of attention is paid to personalisation of services and content presented to a user. Personalisation is based on profiles of a users built on top of diverse data: logs, texts, pictures, etc. The goal of the paper is to analyse a connection between a type of user’s personality and his colour preferences, to enable for personalisation. To reach this goal, correlations between outcomes of BFI-44 Personality Traits and colour preferences inspired by Plutchik’s Wheel of Emotions for individual users were analysed. 144 respondents had been surveyed with a questionnaire to enable the analysis. The results were analysed using linear models for different personality traits. Outcomes, together with their quality assessment, are presented in the paper.

Keywords

User profiling Online social networks User profile Activity recognition and understanding 

References

  1. 1.
    Ahrndt, S., Aria, A., Fähndrich, J., Albayrak, S.: Ants in the OCEAN: modulating agents with personality for planning with humans. In: Bulling, N. (ed.) EUMAS 2014. LNCS (LNAI), vol. 8953, pp. 3–18. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17130-2_1CrossRefGoogle Scholar
  2. 2.
    Azmi, M.A.S.B., Mazli, N.B., Yusof, Y., Hassan, M.F.H.A.: Study of RGB color classification using fuzzy logic. In: ETERD 2010 Proceedings. ACM (2010)Google Scholar
  3. 3.
    Bakhshi, S., Shamma, D.A., Gilbert, E.: Faces engage us: photos with faces attract more likes and comments on Instagram. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 965–974. ACM (2014)Google Scholar
  4. 4.
    Borth, D., Ji, R., Chen, T., Breuel, T., Chang, S.F.: Large-scale visual sentiment ontology and detectors using adjective noun pairs. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 223–232. ACM (2013)Google Scholar
  5. 5.
    Chaudhari, R., Patil, A.: Content based image retrieval using color and shape features. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 1(5), 67–72 (2012)Google Scholar
  6. 6.
    Ferwerda, B., Schedl, M., Tkalcic, M.: Predicting personality traits with Instagram pictures. In: Proceedings of the 3rd Workshop on Emotions and Personality in Personalized Systems 2015, pp. 7–10. ACM (2015)Google Scholar
  7. 7.
    Geurin-Eagleman, A.N., Burch, L.M.: Communicating via photographs: a gendered analysis of olympic athletes’ visual self-presentation on Instagram. Sport Manag. Rev. 19(2), 133–145 (2016)CrossRefGoogle Scholar
  8. 8.
    Ghorawat, D., Madan, R.: Correlation between personality types and color shade preference. Int. J. Indian Psychol. 1(04), 70–79 (2014)Google Scholar
  9. 9.
    Giannoulakis, S., Tsapatsoulis, N.: Evaluating the descriptive power of Instagram hashtags. J. Innov. Digit. Ecosyst. 3(2), 114–129 (2016)CrossRefGoogle Scholar
  10. 10.
    Ha, S.V.U., Pham, N.T., Pham, L.H., Tran, H.M.: Robust reflection detection and removal in rainy conditions using LAB and HSV color spaces. REV J. Electron. Commun. 6(1–2), 13–19 (2016)Google Scholar
  11. 11.
    Hochman, N., Schwartz, R.: Visualizing Instagram: tracing cultural visual rhythms. In: Proceedings of the Workshop on Social Media Visualization (SocMedVis) in Conjunction with the Sixth International AAAI Conference on Weblogs and Social Media (ICWSM-12), pp. 6–9 (2012)Google Scholar
  12. 12.
    Hosseinmardi, H., Mattson, S.A., Rafiq, R.I., Han, R., Lv, Q., Mishra, S.: Detection of cyberbullying incidents on the Instagram social network. arXiv preprint arXiv:1503.03909 (2015)
  13. 13.
    Hu, Y., Manikonda, L., Kambhampati, S., et al.: What we Instagram: a first analysis of Instagram photo content and user types. In: ICWSM (2014)Google Scholar
  14. 14.
    Jackson, C.A., Luchner, A.F.: Self-presentation mediates the relationship between self-criticism and emotional response to Instagram feedback. Pers. Individ. Differ. 133, 1–6 (2018).  https://doi.org/10.1016/j.paid.2017.04.052. ISSN: 0191-8869CrossRefGoogle Scholar
  15. 15.
    Jamil, N., Sa’adan, S.A.: Automatic image annotation using color K-means clustering. In: Badioze Zaman, H., Robinson, P., Petrou, M., Olivier, P., Schröder, H., Shih, T.K. (eds.) IVIC 2009. LNCS, vol. 5857, pp. 645–652. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05036-7_61CrossRefGoogle Scholar
  16. 16.
    Jang, J.Y., Han, K., Shih, P.C., Lee, D.: Generation like: comparative characteristics in Instagram. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 4039–4042. ACM (2015)Google Scholar
  17. 17.
    John, O.P., Srivastava, S.: The big five trait taxonomy: history, measurement, and theoretical perspectives. Handb. Pers.: Theory Res. 2(1999), 102–138 (1999)Google Scholar
  18. 18.
    Labovitz, S.: Criteria for selecting a significance level: a note on the sacredness of 0.05. Am. Sociol. 3, 200–222 (1968)Google Scholar
  19. 19.
    Liu, L., Preotiuc-Pietro, D., Samani, Z.R., Moghaddam, M.E., Ungar, L.H.: Analyzing personality through social media profile picture choice. In: ICWSM, pp. 211–220 (2016)Google Scholar
  20. 20.
    Liu, T.Y., Scollon, C.N., Zhu, W.: Social Informatics: 7th International Conference, SocInfo 2015, Beijing, China, December 9–12, 2015, Proceedings, vol. 9471. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  21. 21.
    Lup, K., Trub, L., Rosenthal, L.: Instagram# instasad?: exploring associations among Instagram use, depressive symptoms, negative social comparison, and strangers followed. Cyberpsychology Behav. Soc. Netw. 18(5), 247–252 (2015)CrossRefGoogle Scholar
  22. 22.
    Machajdik, J., Hanbury, A.: Affective image classification using features inspired by psychology and art theory. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 83–92. ACM (2010)Google Scholar
  23. 23.
    Min, R., Cheng, H.: Effective image retrieval using dominant color descriptor and fuzzy support vector machine. Pattern Recogn. 42(1), 147–157 (2009)CrossRefGoogle Scholar
  24. 24.
    Pazda, A.D.: Colorful personalities: investigating the relationship between chroma, person perception, and personality traits. Ph.D. thesis, University of Rochester (2015)Google Scholar
  25. 25.
    Perkins, J., Dutson, S., Quinn, R., Greene, Y., Nautu, T., Davis, E.J.: Is every picture worth 1,000 likes?: a content analysis of the images and messages on popular Instagram accounts (2017)Google Scholar
  26. 26.
    Pittman, M.: Creating, consuming, and connecting: examining the relationship between social media engagement and loneliness. J. Soc. Media Soc. 4(1), 66–98 (2015)Google Scholar
  27. 27.
    Plutchik, R.: Emotion: A Psychoevolutionary Synthesis. Harpercollins College Division, New York (1980)Google Scholar
  28. 28.
    Potluri, T., Nitta, G.: Content based video retrieval using dominant color of the truncated blocks of frame. J. Theor. Appl. Inf. Technol. 85(2), 165 (2016)Google Scholar
  29. 29.
    Simes, R.J.: An improved bonferroni procedure for multiple tests of significance. Biometrika 73(3), 751–754 (1986)CrossRefGoogle Scholar
  30. 30.
    Smith, L.R., Sanderson, J.: I’m going to Instagram it! An analysis of athlete self-presentation on Instagram. J. Broadcast. Electron. Media 59(2), 342–358 (2015)CrossRefGoogle Scholar
  31. 31.
    Souza, F., et al.: Dawn of the selfie era: the whos, wheres, and hows of selfies on Instagram. In: Proceedings of the 2015 ACM on Conference on Online Social Networks, pp. 221–231. ACM (2015)Google Scholar
  32. 32.
    Tao, B., Xu, S., Pan, X., Gao, Q., Wang, W.: Personality trait correlates of color preference in schizophrenia. Transl. Neurosci. 6(1), 174–178 (2015)CrossRefGoogle Scholar
  33. 33.
    Wang, P., Zhang, D., Zeng, G., Wang, J.: Contextual dominant color name extraction for web image search. In: 2012 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 319–324. IEEE (2012)Google Scholar
  34. 34.
    Waterloo, S.F., Baumgartner, S.E., Peter, J., Valkenburg, P.M.: Norms of online expressions of emotion: comparing Facebook, Twitter, Instagram, and Whatsapp. New Media Soc. (2017).  https://doi.org/10.1177/1461444817707349CrossRefGoogle Scholar
  35. 35.
    Zhong, C., Chan, H.W., Karamshu, D., Lee, D., Sastry, N.: Wearing many (social) hats: how different are your different social network personae? arXiv preprint arXiv:1703.04791 (2017)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Magdalena Wieloch
    • 1
  • Katarzyna Kabzińska
    • 1
  • Dominik Filipiak
    • 1
  • Agata Filipowska
    • 1
  1. 1.Department of Information Systems, Faculty of Informatics and Electronic EconomyPoznań University of Economics and BusinessPoznańPoland

Personalised recommendations