Advertisement

Access Control and Quality Attributes of Open Data: Applications and Techniques

  • Erisa Karafili
  • Konstantina Spanaki
  • Emil C. Lupu
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 339)

Abstract

Open Datasets provide one of the most popular ways to acquire insight and information about individuals, organizations and multiple streams of knowledge. Exploring Open Datasets by applying comprehensive and rigorous techniques for data processing can provide the ground for innovation and value for everyone if the data are handled in a legal and controlled way. In our study, we propose an argumentation and abductive reasoning approach for data processing which is based on the data quality background. Explicitly, we draw on the literature of data management and quality for the attributes of the data, and we extend this background through the development of our techniques. Our aim is to provide herein a brief overview of the data quality aspects, as well as indicative applications and examples of our approach. Our overall objective is to bring serious intent and propose a structured way for access control and processing of open data with a focus on the data quality aspects.

Keywords

Data quality Argumentation reasoning Open data Data access 

Notes

Acknowledgments

Erisa Karafili was supported by the European Union’s H2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 746667.

References

  1. 1.
    Arnold, S.E.: Information manufacturing: the road to database quality. Database 15(5), 32–39 (1992)Google Scholar
  2. 2.
    Ballou, D., Wang, R., Pazer, H., Tayi, G.K.: Modeling information manufacturing systems to determine information product quality. Manag. Sci. 44(4), 462–484 (1998)CrossRefGoogle Scholar
  3. 3.
    Bayuk, J.: Data-centric security. Comput. Fraud Secur. 2009(3), 7–11 (2009)CrossRefGoogle Scholar
  4. 4.
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)CrossRefGoogle Scholar
  5. 5.
    Brodie, M.L.: Data quality in information systems. Inf. Manag. 3(6), 245–258 (1980)CrossRefGoogle Scholar
  6. 6.
    Chesbrough, H.: The era of open innovation. MIT Sloan Manag. Rev. 44(3), 35–41 (2003)Google Scholar
  7. 7.
    Craven, R., Lobo, J., Ma, J., Russo, A., Lupu, E.C., Bandara, A.K.: Expressive policy analysis with enhanced system dynamicity. In: Proceedings of the 2009 ACM Symposium on Information, Computer and Communications Security, ASIACCS, pp. 239–250 (2009)Google Scholar
  8. 8.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)CrossRefGoogle Scholar
  9. 9.
    Ferraiolo, D.F., Kuhn, D.R.: Role-based access controls. In: 15th National Computer Security Conference (1992)Google Scholar
  10. 10.
    Fitzgerald, B.: The transformation of open source software. MIS Q. Manag. Inf. Syst. 30, 587–598 (2006)CrossRefGoogle Scholar
  11. 11.
    Fox, C., Levitin, A., Redman, T.: The notion of data and its quality dimensions. Inf. Process. Manag. 30(1), 9–19 (1994)CrossRefGoogle Scholar
  12. 12.
    Hazen, B.T., Boone, C.A., Ezell, J.D., Jones-Farmer, L.A.: Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications. Int. J. Prod. Econ. 154, 72–80 (2014)CrossRefGoogle Scholar
  13. 13.
    Huh, Y., Keller, F., Redman, T., Watkins, A.: Data quality. Inf. Softw. Technol. 32(8), 559–565 (1990)CrossRefGoogle Scholar
  14. 14.
    Janssen, M., Charalabidis, Y., Zuiderwijk, A.: Benefits, adoption barriers and myths of open data and open government. Inf. Syst. Manag. 29, 258–268 (2012)CrossRefGoogle Scholar
  15. 15.
    Janssen, M., van den Hoven, J.: Big and Open Linked Data (BOLD) in government: a challenge to transparency and privacy? Gov. Inf. Q. 32, 363–368 (2015)CrossRefGoogle Scholar
  16. 16.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Comput. 2(6), 719–770 (1992)CrossRefGoogle Scholar
  17. 17.
    Karafili, E., Kakas, A.C., Spanoudakis, N.I., Lupu, E.C.: Argumentation-based security for social good. In: AAAI Fall Symposium Series (2017)Google Scholar
  18. 18.
    Karafili, E., Lupu, E.C.: Enabling data sharing in contextual environments: policy representation and analysis. In: Proceedings of the 22nd ACM on Symposium on Access Control Models and Technologies, SACMAT 2017, Indianapolis, IN, USA, 21–23 June 2017, pp. 231–238 (2017)Google Scholar
  19. 19.
    Karafili, E., Lupu, E.C., Cullen, A., Williams, B., Arunkumar, S., Calo, S.B.: Improving data sharing in data rich environments. In: 2017 IEEE International Conference on Big Data, BigData 2017, Boston, MA, USA, 11–14 December 2017, pp. 2998–3005 (2017)Google Scholar
  20. 20.
    Karafili, E., Nielson, H.R., Nielson, F.: How to trust the re-use of data. In: Foresti, S. (ed.) STM 2015. LNCS, vol. 9331, pp. 72–88. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24858-5_5CrossRefGoogle Scholar
  21. 21.
    Karafili, E., Spanaki, K., Lupu, E.C.: An argumentation reasoning approach for data processing. Comput. Ind. 94, 52–61 (2018)CrossRefGoogle Scholar
  22. 22.
    Lazouski, A., Martinelli, F., Mori, P.: A prototype for enforcing usage control policies based on XACML. In: Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012. LNCS, vol. 7449, pp. 79–92. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32287-7_7CrossRefGoogle Scholar
  23. 23.
    Lichtenthaler, U.: Open innovation: past research, current debates, and future directions. Acad. Manag. Perspect. 25, 75–93 (2011)CrossRefGoogle Scholar
  24. 24.
    Lindman, J., Kinnari, T., Rossi, M.: Industrial open data: case studies of early open data entrepreneurs. In: 47th Hawaii International Conference on System Sciences, pp. 739–748 (2014)Google Scholar
  25. 25.
    Lindman, J., Rossi, M., Tuunainen,V.: Open data services: research agenda. In: 46th Hawaii International Conference on System Sciences, pp. 1239–1246 (2013)Google Scholar
  26. 26.
    March, S.T., Hevner, A.R.: Integrated decision support systems: a data warehousing perspective. Decis. Support Syst. 43(3), 1031–1043 (2007)CrossRefGoogle Scholar
  27. 27.
    Mont, M.C., Pearson, S.: Sticky policies: an approach for managing privacy across multiple parties. Computer 44, 60–68 (2011)Google Scholar
  28. 28.
    Redman, T.C.: The impact of poor data quality on the typical enterprise. Commun. ACM 41(2), 79–82 (1998)CrossRefGoogle Scholar
  29. 29.
    Redman, T.C., Blanton, A.: Data Quality for the Information Age. Artech House Inc., Norwood (1997)Google Scholar
  30. 30.
    Ronen, B., Spiegler, I.: Information as inventory: a new conceptual view. Inf. Manag. 21(4), 239–247 (1991)CrossRefGoogle Scholar
  31. 31.
    Spanaki, K., Gürgüç, Z., Adams, R., Mulligan, C.: Data supply chain (DSC): research synthesis and future directions. Int. J. Prod. Res. 56(13), 4447–4466 (2018)CrossRefGoogle Scholar
  32. 32.
    Strong, D.M., Lee, Y.W., Wang, R.Y.: Data quality in context. Commun. ACM 40(5), 103–110 (1997)CrossRefGoogle Scholar
  33. 33.
    Swarup, V., Seligman, L., Rosenthal, A.: Specifying data sharing agreements. In: 7th IEEE International Workshop on Policies for Distributed Systems and Networks, POLICY, pp. 157–162 (2006)Google Scholar
  34. 34.
    Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data storage security in cloud computing. In: 2010 Proceedings of INFOCOM, pp. 1–9. IEEE (2010)Google Scholar
  35. 35.
    Wang, R.Y.: A product perspective on total data quality management. Commun. ACM 41(2), 58–65 (1998)CrossRefGoogle Scholar
  36. 36.
    Wang, R.Y., Reddy, M.P., Kon, H.B.: Toward quality data: an attribute-based approach. Decis. Support Syst. 13(3), 349–372 (1995)CrossRefGoogle Scholar
  37. 37.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12(4), 5–33 (1996)CrossRefGoogle Scholar
  38. 38.
    Willinsky, J.: The Access Principle: The Case for Open Access to Research and Scholarship. The MIT Press, Cambridge (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.School of Business and EconomicsLoughborough UniversityLoughboroughUK

Personalised recommendations