Situation-Dependent Data Quality Analysis for Geospatial Data Using Semantic Technologies

  • Timo HomburgEmail author
  • Frank Boochs
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 339)


In this paper we present a new way to evaluate geospatial data quality using Semantic technologies. In contrast to non-semantic approaches to evaluate data quality, Semantic technologies allow us to model situations in which geospatial data may be used and to apply costumized geospatial data quality models using reasoning algorithms on a broad scale. We explain how to model data quality using common vocabularies of ontologies in various contexts, apply data quality results using reasoning in a real-world application case using OpenStreetMap as our data source and highlight the results of our findings on the example of disaster management planning for rescue forces. We contribute to the Semantic Web community and the OpenStreetMap community by proposing a semantic framework to combine usecase dependent data quality assignments which can be used as reasoning rules and as data quality assurance tools for both communities respectively.


Data quality GIS Reference data Machine learning OpenStreetMap 



This work was funded by the German Federal Ministry of Education and Research under project reference number 03FH032IX4.


  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). Scholar
  2. 2.
    Auer, S., Lehmann, J., Hellmann, S.: LinkedGeoData: adding a spatial dimension to the web of data. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 731–746. Springer, Heidelberg (2009). Scholar
  3. 3.
    Barron, C., Neis, P., Zipf, A.: A comprehensive framework for intrinsic openstreetmap quality analysis. Trans. GIS 18(6), 877–895 (2014)CrossRefGoogle Scholar
  4. 4.
    Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and geosparql. Semant. Web 3(4), 355–370 (2012)Google Scholar
  5. 5.
    Belhajjame, K., et al.: PROV-O: the PROV ontology. W3C Working Draft (2012)Google Scholar
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)CrossRefGoogle Scholar
  7. 7.
    Chaudhuri, G., Clarke, K.C.: Temporal accuracy in urban growth forecasting: a study using the SLEUTH model. Trans. GIS 18(2), 302–320 (2014)CrossRefGoogle Scholar
  8. 8.
    Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB tO RDF mapping language. w3c recommendation, 27 September 2012. World Wide Web Consortium (W3C), Cambridge (2012).
  9. 9.
    Debattista, J., Lange, C., Auer, S.: daQ, an ontology for dataset quality information. In: LDOW (2014)Google Scholar
  10. 10.
    Drummond, J.: Positional accuracy. In: Elements of Spatial Data Quality, pp. 31–58. Elsevier, Amsterdam (1995)CrossRefGoogle Scholar
  11. 11.
    Fan, H., Zipf, A., Fu, Q., Neis, P.: Quality assessment for building footprints data on openstreetmap. Int. J. Geogr. Inf. Sci. 28(4), 700–719 (2014)CrossRefGoogle Scholar
  12. 12.
    Goodchild, M.F.: Attribute accuracy. In: Elements of Spatial Data Quality, pp. 59–79. Elsevier, Amsterdam (1995)CrossRefGoogle Scholar
  13. 13.
    Haklay, M., Weber, P.: Openstreetmap: user-generated street maps. IEEE Pervasive Comput. 7(4), 12–18 (2008)CrossRefGoogle Scholar
  14. 14.
    Hecht, R., Kunze, C., Hahmann, S.: Measuring completeness of building footprints in openstreetmap over space and time. ISPRS Int. J. Geo-Inf. 2(4), 1066–1091 (2013)CrossRefGoogle Scholar
  15. 15.
    Hodgson, R., Keller, P.J.: QUDT-quantities, units, dimensions and data types in OWL and XML (2011).
  16. 16.
    Homburg, T., Boochs, F., Roxin, A., Cruz, C.: Map change prediction for quality assurance. In: The 14th Conference on Location Based Services. ETH Zurich (2018)Google Scholar
  17. 17.
    Homburg, T., et al.: Interpreting heterogeneous geospatial data using semantic web technologies. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 240–255. Springer, Cham (2016). Scholar
  18. 18.
    Data quality - Part 8: Information and data quality: Concepts and measuring. Standard, International Organization for Standardization, Geneva, CH, November 2015Google Scholar
  19. 19.
    Kainz, W.: Logical consistency. In: Elements of Spatial Data Quality, pp. 109–137, 202. Elseiver, Amsterdam (1995)CrossRefGoogle Scholar
  20. 20.
    Koubarakis, M., Bereta, K., Papadakis, G., Savva, D., Stamoulis, G.: Big, linked geospatial data and its applications in earth observation. IEEE Internet Comput. 4, 87–91 (2017)CrossRefGoogle Scholar
  21. 21.
    Mooney, P., Corcoran, P., Winstanley, A.C.: Towards quality metrics for openstreetmap. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 514–517. ACM (2010)Google Scholar
  22. 22.
    Neis, P., Zipf, A.: Analyzing the contributor activity of a volunteered geographic information project–the case of openstreetmap. ISPRS Int. J. Geo-Inf. 1(2), 146–165 (2012)CrossRefGoogle Scholar
  23. 23.
    Palen, L., Soden, R., Anderson, T.J., Barrenechea, M.: Success & scale in a data-producing organization: the socio-technical evolution of openstreetmap in response to humanitarian events. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 4113–4122. ACM (2015)Google Scholar
  24. 24.
    Prud, E., Seaborne, A., et al.: SPARQL query language for RDF (2006)Google Scholar
  25. 25.
    Prudhomme, C., Homburg, T., Jean-Jacques, P., Boochs, F., Roxin, A., Cruz, C.: Automatic integration of spatial data into the semantic web. In: WebIST 2017 (2017)Google Scholar
  26. 26.
    Salgé, F.: Semantic accuracy. In: Elements of Spatial Data Quality, pp. 139–151. Elsevier, Amsterdam (1995)CrossRefGoogle Scholar
  27. 27.
    Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk-a link discovery framework for the web of data. In: LDOW, vol. 538 (2009)Google Scholar
  28. 28.
    Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)CrossRefGoogle Scholar
  29. 29.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12(4), 5–33 (1996)CrossRefGoogle Scholar
  30. 30.
    Würriehausen, F., Homburg, T., Müller, H.: Using an inspire ontology to support spatial data interoperability. In: INSPIRE 2016, Barcelona, Spain, September 2016Google Scholar
  31. 31.
    Yue, P., He, L.: Geospatial data provenance in cyberinfrastructure. In: 2009 17th International Conference on Geoinformatics, pp. 1–4. IEEE (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mainz University of Applied SciencesMainzGermany

Personalised recommendations