A Public, Blockchain-Based Distributed Smart-Contract Platform Enabling Mobile Lite Wallets Using a Proof-of-Stake Consensus Algorithm

  • Alex NortaEmail author
  • Patrick Dai
  • Neil Mahi
  • Jordan Earls
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 339)


Blockchain-enabled smart contracts that employ proof-of-stake validation for transactions, promise significant performance advantages compared to proof-of-work solutions. For broad industry adoption, other important requirements must be met in addition. For example, stable backwards-compatible smart-contract systems must automate cross-organizational information-logistics orchestration with lite mobile wallets that support the unspent transaction output (UTXO) protocol and simple payment verification (SPV) techniques. The currently leading smart-contract solution Ethereum, uses computationally expensive proof-of-work validation, is expected to hard-fork multiple times in the future and requires downloading the entire blockchain. Consequently, Ethereum smart contracts have limited utility for large industry applications. This paper fills the gap in the state of the art by presenting the Qtum smart-contract framework that allows for managing transaction headers in lite mobile wallets in addition with using a proof-of-stake (PoS) consensus algorithm.


Smart contract Blockchain Mobile Lite wallet PoS Abstraction layer SVP UTXO 


  1. 1.
    Antonopoulos, A.M.: Mastering Bitcoins (2014)Google Scholar
  2. 2.
    Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). Scholar
  3. 3.
    Biryukov, A., Khovratovich, D.: Equihash: asymmetric proof-of-work based on the generalized birthday problem. In: Proceedings of NDSS 2016, San Diego, CA, USA, 21–24 February 2016 (2016). ISBN 1-891562-41-XGoogle Scholar
  4. 4.
    Bisping, B., et al.: Mechanical verification of a constructive proof for FLP. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 107–122. Springer, Cham (2016). Scholar
  5. 5.
    Bussmann, O.: The future of finance: fintech, tech disruption, and orchestrating innovation. In: Francioni, R., Schwartz, R.A. (eds.) Equity Markets in Transition, pp. 473–486. Springer, Cham (2017). Scholar
  6. 6.
    Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on Distributed Cryptocurrencies and Consensus Ledgers (2016)Google Scholar
  7. 7.
    Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)CrossRefGoogle Scholar
  8. 8.
    Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016). Scholar
  9. 9.
    Dai, P., Mahi, N., Earls, J., Norta, A.: Smart-Contract Value-Transfer Protocols on a Distributed Mobile Application Platform (2017).
  10. 10.
    Frey, D., Makkes, M.X., Roman, P.L., Taïani, F., Voulgaris, S.: Bringing secure Bitcoin transactions to your smartphone. In: Proceedings of the 15th International Workshop on Adaptive and Reflective Middleware, ARM 2016, pp. 3:1–3:6. ACM, New York (2016)Google Scholar
  11. 11.
    Kiayias, A., Konstantinou, I., Russell, A., David, B., Oliynykov, R.: A provably secure proof-of-stake blockchain protocol (2016)Google Scholar
  12. 12.
    Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 254–269 (2016)Google Scholar
  13. 13.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012):28 (2008)Google Scholar
  14. 14.
    Norta, A., Hawthorne, D., Engel, S.L.: A privacy-protecting data-exchange wallet with ownership-and monetization capabilities. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)Google Scholar
  15. 15.
    Ouaddah, A., Elkalam, A.A., Ouahman, A.A.: Towards a novel privacy-preserving access control model based on blockchain technology in IoT. In: Rocha, Á., Serrhini, M., Felgueiras, C. (eds.) Europe and MENA Cooperation Advances in Information and Communication Technologies. AISC, vol. 520, pp. 523–533. Springer, Cham (2017). Scholar
  16. 16.
    Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant payments (2015)Google Scholar
  17. 17.
    Rosenfeld, M.: Overview of colored coins. White paper, (2012)Google Scholar
  18. 18.
    Serguei, P.: A probabilistic analysis of the Nxt forging algorithm. Ledger 1, 69–83 (2016)CrossRefGoogle Scholar
  19. 19.
    Vasin, P.: Blackcoin’s proof-of-stake protocol v2 (2014)Google Scholar
  20. 20.
    Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). Scholar
  21. 21.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alex Norta
    • 1
    Email author
  • Patrick Dai
    • 2
  • Neil Mahi
    • 2
  • Jordan Earls
    • 2
  1. 1.Department of Software ScienceTallinn University of TechnologyTallinnEstonia
  2. 2.Qtum FoundationSingaporeSingapore

Personalised recommendations