Advertisement

Industrial Socio-Cyberphysical System’s Consumables Tokenization for Smart Contracts in Blockchain

  • Nikolay TeslyaEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 339)

Abstract

As a result of the development of the Industry 4.0 concept, the physical characteristics of production and the production process were transferred to the digital form. This process is also known as production digitalization. Digitalization allows creating so-called digital twins of production components, among which are smart objects, including machines (production robots), people, software services, processed materials and manufactured products. Digital twins allow to display not only the current state of the component, but also predict its actions according the current situation by creating behavior patterns. The interaction of digital twins is carried out through the cloud platform of the Internet of Things using an ontological representation to ensure interoperability. Interaction via cloud IoT platform causes problems associated with providing trust in the distribution of consumables between components of the industrial IoT system. One of the recent solutions to such problems is using of blockchain technology. In this paper, an example of the integration of industrial IoT and blockchain technology is presented. Each component of the system is represented by a corresponding digital twin, capable of interacting on-the-fly with ontologies in the IoT and blockchain network. To solve the problem of control and exchange of consumable resources in IIoT, this paper proposes classification and principles of resource tokenization depending on their class. The tokenization has been checked by creating smart contracts for consumables allocation on Hyperledger Fabric platform.

Keywords

Industrial IoT Socio-cyberphysical system Blockchain Digitalization Tokenization Smart contract 

Notes

Acknowledgements

The presented research was partially supported by the projects funded through grants # 17-29-07073, 17-07-00327 and 17-07-00328 of the Russian Foundation for Basic Research.

References

  1. 1.
    Cheng, H., Zeng, P., Xue, L., Shi, Z., Wang, P., Yu, H.: Manufacturing ontology development based on industry 4.0 demonstration production line. In: Proceedings of 2016 3rd International Conference on Trust System Their Application TSA 2016, pp. 42–47 (2016).  https://doi.org/10.1109/tsa.2016.17
  2. 2.
    El Kadiri, S., et al.: Current trends on ICT technologies for enterprise information systems. Comput. Ind. 79, 14–33 (2016).  https://doi.org/10.1016/j.compind.2015.06.008CrossRefGoogle Scholar
  3. 3.
    Bedenbender, H., Bentkus, A., Epple, U., Hadlich, T.: Industrie 4.0 Plug-and-Produce for Adaptable Factories: Example Use Case Definition, Models, and Implementation, pp. 56–62 (2017)Google Scholar
  4. 4.
    Silva, J.R., Nof, S.Y.: Manufacturing service: from e-Work and service-oriented approach towards a product-service architecture. IFAC-PapersOnLine 48, 1628–1633 (2015).  https://doi.org/10.1016/J.IFACOL.2015.06.319CrossRefGoogle Scholar
  5. 5.
    Pisching, M.A., Junqueira, F., Filho, D.J.S., Miyagi, P.E.: Service composition in the cloud-based manufacturing focused on the industry 4.0. In: IFIP Advances in Information and Communication Technology, pp. 65–72 (2015)Google Scholar
  6. 6.
    Zhang, D., Wan, J., Hsu, C.H., Rayes, A.: Industrial technologies and applications for the internet of things. Comput. Netw. 101, 1–4 (2016).  https://doi.org/10.1016/j.comnet.2016.02.019CrossRefGoogle Scholar
  7. 7.
    Burke, R., Mussomeli, A., Laaper, S., Hartigan, M., Sniderman, B.: The smart Factory (2017)Google Scholar
  8. 8.
    Gierej, S.: The framework of business model in the context of industrial internet of things. Procedia Eng. 182, 206–212 (2017).  https://doi.org/10.1016/j.proeng.2017.03.166CrossRefGoogle Scholar
  9. 9.
    Zhu, T., Dhelim, S., Zhou, Z., Yang, S., Ning, H.: An architecture for aggregating information from distributed data nodes for industrial internet of things. Comput. Electr. Eng. 58, 337–349 (2017).  https://doi.org/10.1016/j.compeleceng.2016.08.018CrossRefGoogle Scholar
  10. 10.
    Tang, H., Li, D., Wang, S., Dong, Z.: CASOA: an architecture for agent-based manufacturing system in the context of industry 4.0. IEEE Access 6, 12746–12754 (2017).  https://doi.org/10.1109/access.2017.2758160. 3536CrossRefGoogle Scholar
  11. 11.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38721-0CrossRefGoogle Scholar
  12. 12.
    Smirnov, A., Kashevnik, A., Ponomarev, A., Teslya, N., Shchekotov, M., Balandin, S.I.: Smart space-based tourist recommendation system. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN 2014. LNCS, vol. 8638, pp. 40–51. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10353-2_4CrossRefGoogle Scholar
  13. 13.
    Lemaignan, S., Siadat, A., Dantan, J.Y., Semenenko, A.: MASON: a proposal for an ontology of manufacturing domain. In: Proceedings - DIS 2006: IEEE Workshop on Distributed Intelligent Systems - Collective Intelligence and Its Applications, pp. 195–200. IEEE (2006)Google Scholar
  14. 14.
    Huckle, S., Bhattacharya, R., White, M., Beloff, N.: Internet of things, blockchain and shared economy applications. Procedia Comput. Sci. 98, 461–466 (2016).  https://doi.org/10.1016/j.procs.2016.09.074CrossRefGoogle Scholar
  15. 15.
    Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42, 949–971 (2015).  https://doi.org/10.1016/j.eswa.2014.08.032CrossRefGoogle Scholar
  16. 16.
    Teslya, N., Smirnov, A., Levashova, T., Shilov, N.: Ontology for resource self-organisation in cyber-physical-social systems. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2014. CCIS, vol. 468, pp. 184–195. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11716-4_16CrossRefGoogle Scholar
  17. 17.
    Sikorski, J.J., Haughton, J., Kraft, M., Street, P., Drive, P.F.: Blockchain technology in the chemical industry: machine-to-machine electricity market. Appl. Energy 195, 234–246 (2016).  https://doi.org/10.1016/j.apenergy.2017.03.039CrossRefGoogle Scholar
  18. 18.
    Abeyratne, S.A., Monfared, R.P.: Blockchain ready manufacturing supply chain using distributed ledger. Int. J. Res. Eng. Technol. 05, 1–10 (2016).  https://doi.org/10.15623/ijret.2016.0509001CrossRefGoogle Scholar
  19. 19.
    Jia, X., Fathy, R.A., Huang, Z., Luo, S., Gong, J., Peng, J.: Framework of blockchain of things as decentralized service platform (2017)Google Scholar
  20. 20.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System, p. 9 (2008). http://www.bitcoin.org,  https://doi.org/10.1007/s10838-008-9062-0CrossRefGoogle Scholar
  21. 21.
    Hoy, M.B.: An introduction to the blockchain and its implications for libraries and medicine. Med. Ref. Serv. Q. 36, 273–279 (2017).  https://doi.org/10.1080/02763869.2017.1332261CrossRefGoogle Scholar
  22. 22.
    Teslya, N., Ryabchikov, I.: Blockchain-based platform architecture for industrial IoT. In: Proceeding of the 21st Conference of FRUCT Association, pp. 321–329 (2017)Google Scholar
  23. 23.
    Szabo, N.: Formalizing and securing relationships on public networks. First Monday 2 (1997).  https://doi.org/10.5210/fm.v2i9.548
  24. 24.
    Hepp, M.: Goodrelations: an ontology for describing products and services offers on the web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 329–346. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87696-0_29CrossRefGoogle Scholar
  25. 25.
    Martin, D., et al.: OWL-S: Semantic Markup for Web Services (2004). https://www.w3.org/Submission/OWL-S/. Accessed 22 Feb 2018
  26. 26.
    Gräser, O., et al.: White paper AutomationML and eCl@ss integration (2015)Google Scholar
  27. 27.
    Hepp, M., Leenheer, P., Moor, A., Sure, Y.: Ontology Management. Springer, Boston (2008).  https://doi.org/10.1007/978-3-540-88845-1_2CrossRefGoogle Scholar
  28. 28.
    IEC: IEC 62264-1 Enterprise-control system integration – Part 1: Models and terminology (2003)Google Scholar
  29. 29.
    Usman, Z., Young, R.I., Case, K., Harding, J.: A manufacturing foundation ontology for product lifecycle interoperability. Enterprise Interoperability IV Making Internet Future Enterprises, pp. 147–155 (2010).  https://doi.org/10.1007/978-1-84996-257-5_14CrossRefGoogle Scholar
  30. 30.
    Martinez Lastra, J.L., Delamer, I.M.: Ontologies for production automation. In: Dillon, T.S., Chang, E., Meersman, R., Sycara, K. (eds.) Advances in Web Semantics I. LNCS, vol. 4891, pp. 276–289. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89784-2_11CrossRefGoogle Scholar
  31. 31.
    Androulaki, E., et al.: Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains, p. 15 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SPIIRASSt. PetersburgRussia

Personalised recommendations