Advertisement

Unconstrained Salient Object Detection

  • Jianming Zhang
  • Filip Malmberg
  • Stan Sclaroff
Chapter

Abstract

In this chapter, we aim at detecting generic salient objects in unconstrained images, which may contain multiple salient objects or no salient object. Solving this problem entails generating a compact set of detection windows that matches the number and the locations of salient objects.

References

  1. 1.
    Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S. Frequency-tuned salient region detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009).Google Scholar
  2. 2.
    Alexe, B., Deselaers, T., and Ferrari, V. Measuring the objectness of image windows. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 34, 11 (2012), 2189–2202.CrossRefGoogle Scholar
  3. 5.
    Arbelaez, P., Pont-Tuset, J., Barron, J., Marques, F., and Malik, J. Multiscale combinatorial grouping. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).Google Scholar
  4. 8.
    Ba, J., Mnih, V., and Kavukcuoglu, K. Multiple object recognition with visual attention. In International Conference on Learning Representations (ICLR) (2015).Google Scholar
  5. 9.
    Barinova, O., Lempitsky, V., and Kholi, P. On detection of multiple object instances using Hough transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 34, 9 (2012), 1773–1784.CrossRefGoogle Scholar
  6. 12.
    Borji, A., Cheng, M.-M., Jiang, H., and Li, J. Salient object detection: A benchmark. IEEE Transactions on Image Processing (TIP) 24, 12 (2015), 5706–5722.MathSciNetCrossRefGoogle Scholar
  7. 20.
    Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. A tight linear time (1/2)-approximation for unconstrained submodular maximization. In Foundations of Computer Science (2012).Google Scholar
  8. 21.
    Carreira, J., and Sminchisescu, C. CPMC: Automatic object segmentation using constrained parametric min-cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 34, 7 (2012), 1312–1328.CrossRefGoogle Scholar
  9. 25.
    Chang, K.-Y., Liu, T.-L., Chen, H.-T., and Lai, S.-H. Fusing generic objectness and visual saliency for salient object detection. In IEEE International Conference on Computer Vision (ICCV) (2011).Google Scholar
  10. 31.
    Chen, X., and Gupta, A. Webly supervised learning of convolutional networks. In IEEE International Conference on Computer Vision (ICCV) (2015).Google Scholar
  11. 34.
    Cheng, M.-M., Mitra, N. J., Huang, X., Torr, P. H. S., and Hu, S.-M. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 37, 3 (2015), 569–582.CrossRefGoogle Scholar
  12. 36.
    Cheng, M.-M., Zhang, Z., Lin, W.-Y., and Torr, P. H. S. BING: Binarized normed gradients for objectness estimation at 300fps. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).Google Scholar
  13. 44.
    Dalal, N., and Triggs, B. Histograms of oriented gradients for human detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005).Google Scholar
  14. 49.
    Desai, C., Ramanan, D., and Fowlkes, C. C. Discriminative models for multi-class object layout. International Journal of Computer Vision (IJCV) 95, 1 (2011), 1–12.MathSciNetzbMATHGoogle Scholar
  15. 50.
    Deselaers, T., Alexe, B., and Ferrari, V. Weakly supervised localization and learning with generic knowledge. International Journal of Computer Vision (IJCV) 100, 3 (2012), 275–293.MathSciNetCrossRefGoogle Scholar
  16. 51.
    Desimone, R., and Duncan, J. Neural mechanisms of selective visual attention. Annual review of neuroscience 18, 1 (1995), 193–222.CrossRefGoogle Scholar
  17. 55.
    Erhan, D., Szegedy, C., Toshev, A., and Anguelov, D. Scalable object detection using deep neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).Google Scholar
  18. 56.
    Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.
  19. 58.
    Feige, U., Mirrokni, V. S., and Vondrak, J. Maximizing non-monotone submodular functions. SIAM Journal on Computing 40, 4 (2011), 1133–1153.MathSciNetCrossRefGoogle Scholar
  20. 59.
    Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 32, 9 (2010), 1627–1645.CrossRefGoogle Scholar
  21. 60.
    Feng, J., Wei, Y., Tao, L., Zhang, C., and Sun, J. Salient object detection by composition. In IEEE International Conference on Computer Vision (ICCV) (2011).Google Scholar
  22. 63.
    Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014), IEEE.Google Scholar
  23. 65.
    Gopalakrishnan, V., Hu, Y., and Rajan, D. Random walks on graphs to model saliency in images. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009).Google Scholar
  24. 73.
    Hosang, J., Benenson, R., and Schiele, B. How good are detection proposals, really? In BMVC (2014).Google Scholar
  25. 83.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. Caffe: Convolutional architecture for fast feature embedding. In ACM International Conference on Multimedia (2014).Google Scholar
  26. 85.
    Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., and Li, S. Salient object detection: A discriminative regional feature integration approach. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).Google Scholar
  27. 89.
    Karpathy, A., and Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015).Google Scholar
  28. 102.
    Larochelle, H., and Hinton, G. E. Learning to combine foveal glimpses with a third-order Boltzmann machine. In Advances in Neural Information Processing Systems (NIPS) (2010).Google Scholar
  29. 110.
    Li, Y., Hou, X., Koch, C., Rehg, J. M., and Yuille, A. L. The secrets of salient object segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).Google Scholar
  30. 112.
    Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., and Shum, H.-Y. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 33, 2 (2011), 353–367.Google Scholar
  31. 113.
    Lu, S., Mahadevan, V., and Vasconcelos, N. Learning optimal seeds for diffusion-based salient object detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).Google Scholar
  32. 115.
    Lu, Y., Zhang, W., Lu, H., and Xue, X. Salient object detection using concavity context. In IEEE International Conference on Computer Vision (ICCV) (2011).Google Scholar
  33. 116.
    Luo, Y., Yuan, J., Xue, P., and Tian, Q. Saliency density maximization for object detection and localization. In Asian Conference on Computer Vision (ACCV) (2011).CrossRefGoogle Scholar
  34. 119.
    Mairon, R., and Ben-Shahar, O. A closer look at context: From coxels to the contextual emergence of object saliency. In European Conference on Computer Vision (ECCV) (2014).Google Scholar
  35. 123.
    Marchesotti, L., Cifarelli, C., and Csurka, G. A framework for visual saliency detection with applications to image thumbnailing. In IEEE International Conference on Computer Vision (ICCV) (2009).Google Scholar
  36. 127.
    Mnih, V., Heess, N., Graves, A., et al. Recurrent models of visual attention. In Advances in Neural Information Processing Systems (NIPS) (2014).Google Scholar
  37. 140.
    Ren, S., He, K., Girshick, R., and Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems (NIPS) (2015).Google Scholar
  38. 143.
    Rothe, R., Guillaumin, M., and Van Gool, L. Non-maximum suppression for object detection by passing messages between windows. In ACCV (2014).Google Scholar
  39. 147.
    Rujikietgumjorn, S., and Collins, R. T. Optimized pedestrian detection for multiple and occluded people. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013), IEEE.Google Scholar
  40. 149.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575 (2014).Google Scholar
  41. 152.
    Scharfenberger, C., Waslander, S. L., Zelek, J. S., and Clausi, D. A. Existence detection of objects in images for robot vision using saliency histogram features. In International Conference on Computer and Robot Vision (2013).Google Scholar
  42. 158.
    Shen, X., and Wu, Y. A unified approach to salient object detection via low rank matrix recovery. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012).Google Scholar
  43. 160.
    Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations (ICLR) (2015).Google Scholar
  44. 161.
    Siva, P., Russell, C., Xiang, T., and Agapito, L. Looking beyond the image: Unsupervised learning for object saliency and detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).Google Scholar
  45. 162.
    Siva, P., and Xiang, T. Weakly supervised object detector learning with model drift detection. In IEEE International Conference on Computer Vision (ICCV) (2011), IEEE, pp. 343–350.Google Scholar
  46. 170.
    Suh, B., Ling, H., Bederson, B. B., and Jacobs, D. W. Automatic thumbnail cropping and its effectiveness. In ACM symposium on User interface software and technology (2003).Google Scholar
  47. 173.
    Szegedy, C., Reed, S., Erhan, D., and Anguelov, D. Scalable, high-quality object detection. arXiv preprint arXiv:1412.1441 (2014).Google Scholar
  48. 180.
    Uijlings, J. R., van de Sande, K. E., Gevers, T., and Smeulders, A. W. Selective search for object recognition. International Journal of Computer Vision (IJCV) 104, 2 (2013), 154–171.CrossRefGoogle Scholar
  49. 181.
    Valenti, R., Sebe, N., and Gevers, T. Image saliency by isocentric curvedness and color. In IEEE International Conference on Computer Vision (ICCV) (2009).Google Scholar
  50. 186.
    Wang, P., Wang, J., Zeng, G., Feng, J., Zha, H., and Li, S. Salient object detection for searched web images via global saliency. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012).Google Scholar
  51. 193.
    Yan, Q., Xu, L., Shi, J., and Jia, J. Hierarchical saliency detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).Google Scholar
  52. 194.
    Yang, C., Zhang, L., Lu, H., Ruan, X., and Yang, M.-H. Saliency detection via graph-based manifold ranking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).Google Scholar
  53. 195.
    Yildirim, G., and Süsstrunk, S. FASA: Fast, Accurate, and Size-Aware Salient Object Detection. In ACCV (2014).Google Scholar
  54. 200.
    Zhang, J., Ma, S., Sameki, M., Sclaroff, S., Betke, M., Lin, Z., Shen, X., Price, B., and Měch, R. Salient object subitizing. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015).Google Scholar
  55. 203.
    Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., and Měch, R. Minimum barrier salient object detection at 80 fps. In IEEE International Conference on Computer Vision(ICCV) (2015).Google Scholar
  56. 207.
    Zhu, J.-Y., Wu, J., Wei, Y., Chang, E., and Tu, Z. Unsupervised object class discovery via saliency-guided multiple class learning. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012).Google Scholar
  57. 209.
    Zitnick, C. L., and Dollár, P. Edge boxes: Locating object proposals from edges. In European Conference on Computer Vision (ECCV) (2014).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jianming Zhang
    • 1
  • Filip Malmberg
    • 2
  • Stan Sclaroff
    • 3
  1. 1.Adobe Inc.San JoseUSA
  2. 2.Centre for Image AnalysisUppsala UniversityUppsalaSweden
  3. 3.Department of Computer ScienceBoston UniversityBostonUSA

Personalised recommendations