Advertisement

Efficient Distance Transform for Salient Region Detection

  • Jianming Zhang
  • Filip Malmberg
  • Stan Sclaroff
Chapter

Abstract

The goal of salient region detection is to compute a saliency map that highlights the regions of salient objects in a scene. Recently, this problem has received a lot of research interest owing to its usefulness in many computer vision applications, e.g. object detection, action recognition, and various image/video processing applications. Due to the emerging applications on mobile devices and large-scale datasets, a desirable salient region detection method should not only output high quality saliency maps, but should also be highly computationally efficient. In this chapter, we address both the quality and speed requirements for salient region detection.

References

  1. 1.
    Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S. Frequency-tuned salient region detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009).Google Scholar
  2. 15.
    Borji, A., Sihite, D. N., and Itti, L. Salient object detection: A benchmark. In European Conference on Computer Vision (ECCV) (2012).CrossRefGoogle Scholar
  3. 33.
    Cheng, M., Zhang, G., Mitra, N., Huang, X., and Hu, S. Global contrast based salient region detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011).Google Scholar
  4. 34.
    Cheng, M.-M., Mitra, N. J., Huang, X., Torr, P. H. S., and Hu, S.-M. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 37, 3 (2015), 569–582.CrossRefGoogle Scholar
  5. 35.
    Cheng, M.-M., Warrell, J., Lin, W.-Y., Zheng, S., Vineet, V., and Crook, N. Efficient salient region detection with soft image abstraction. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).Google Scholar
  6. 40.
    Ciesielski, K. C., Strand, R., Malmberg, F., and Saha, P. K. Efficient algorithm for finding the exact minimum barrier distance. Computer Vision and Image Understanding (CVIU) 123 (2014), 53–64.CrossRefGoogle Scholar
  7. 41.
    Ciesielski, K. C., and Udupa, J. K. A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frameworks. Computer Vision and Image Understanding (CVIU) 115, 6 (2011), 721–734.CrossRefGoogle Scholar
  8. 45.
    Danielsson, P.-E. Euclidean distance mapping. Computer Graphics and image processing 14, 3 (1980), 227–248.CrossRefGoogle Scholar
  9. 57.
    Falcão, A. X., Stolfi, J., and de Alencar Lotufo, R. The image foresting transform: Theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 26, 1 (2004), 19–29.CrossRefGoogle Scholar
  10. 64.
    Goferman, S., Zelnik-Manor, L., and Tal, A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 34, 10 (2012), 1915–1926.CrossRefGoogle Scholar
  11. 84.
    Jiang, B., Zhang, L., Lu, H., Yang, C., and Yang, M.-H. Saliency detection via absorbing Markov chain. In IEEE International Conference on Computer Vision (ICCV) (2013).Google Scholar
  12. 85.
    Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., and Li, S. Salient object detection: A discriminative regional feature integration approach. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).Google Scholar
  13. 99.
    Krähenbühl, P., and Koltun, V. Geodesic object proposals. In European Conference on Computer Vision (ECCV) (2014).Google Scholar
  14. 108.
    Li, X., Lu, H., Zhang, L., Ruan, X., and Yang, M.-H. Saliency detection via dense and sparse reconstruction. In IEEE International Conference on Computer Vision (ICCV) (2013).Google Scholar
  15. 110.
    Li, Y., Hou, X., Koch, C., Rehg, J. M., and Yuille, A. L. The secrets of salient object segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).Google Scholar
  16. 112.
    Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., and Shum, H.-Y. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 33, 2 (2011), 353–367.Google Scholar
  17. 113.
    Lu, S., Mahadevan, V., and Vasconcelos, N. Learning optimal seeds for diffusion-based salient object detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).Google Scholar
  18. 124.
    Margolin, R., Zelnik-Manor, L., and Tal, A. How to evaluate foreground maps? In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).Google Scholar
  19. 141.
    Rosenfeld, A., and Pfaltz, J. L. Distance functions on digital pictures. Pattern recognition 1, 1 (1968), 33–61.MathSciNetCrossRefGoogle Scholar
  20. 142.
    Rosenholtz, R. Search asymmetries? what search asymmetries? Perception & Psychophysics 63, 3 (2001), 476–489.CrossRefGoogle Scholar
  21. 158.
    Shen, X., and Wu, Y. A unified approach to salient object detection via low rank matrix recovery. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012).Google Scholar
  22. 166.
    Strand, R., Ciesielski, K. C., Malmberg, F., and Saha, P. K. The minimum barrier distance. Computer Vision and Image Understanding (CVIU) 117, 4 (2013), 429–437.CrossRefGoogle Scholar
  23. 176.
    Toivanen, P. J. New geodesic distance transforms for gray-scale images. Pattern Recognition Letters 17, 5 (1996), 437–450.CrossRefGoogle Scholar
  24. 184.
    Vincent, L. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing (TIP) 2, 2 (1993), 176–201.CrossRefGoogle Scholar
  25. 187.
    Wei, Y., Wen, F., Zhu, W., and Sun, J. Geodesic saliency using background priors. In European Conference on Computer Vision (ECCV) (2012).CrossRefGoogle Scholar
  26. 193.
    Yan, Q., Xu, L., Shi, J., and Jia, J. Hierarchical saliency detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).Google Scholar
  27. 194.
    Yang, C., Zhang, L., Lu, H., Ruan, X., and Yang, M.-H. Saliency detection via graph-based manifold ranking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).Google Scholar
  28. 201.
    Zhang, J., and Sclaroff, S. saliency detection: a Boolean map approach. In IEEE International Conference on Computer Vision (ICCV) (2013).Google Scholar
  29. 202.
    Zhang, J., and Sclaroff, S. Exploiting surroundedness for saliency detection: a Boolean map approach. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 38, 5 (2016), 889–902.CrossRefGoogle Scholar
  30. 208.
    Zhu, W., Liang, S., Wei, Y., and Sun, J. Saliency optimization from robust background detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jianming Zhang
    • 1
  • Filip Malmberg
    • 2
  • Stan Sclaroff
    • 3
  1. 1.Adobe Inc.San JoseUSA
  2. 2.Centre for Image AnalysisUppsala UniversityUppsalaSweden
  3. 3.Department of Computer ScienceBoston UniversityBostonUSA

Personalised recommendations