Advertisement

A Distance Transform Perspective

  • Jianming Zhang
  • Filip Malmberg
  • Stan Sclaroff
Chapter

Abstract

Distance functions and their transforms (DTs, where each pixel is assigned the distance to a set of seed pixels) are used extensively in many image processing applications. In this chapter, we will provide a distance transform perspective for the core algorithm of BMS. We show that the core algorithm of BMS is basically an efficient distance transform algorithm for a novel distance function, the Boolean Map Distance (BMD).

References

  1. 40.
    Ciesielski, K. C., Strand, R., Malmberg, F., and Saha, P. K. Efficient algorithm for finding the exact minimum barrier distance. Computer Vision and Image Understanding (CVIU) 123 (2014), 53–64.CrossRefGoogle Scholar
  2. 57.
    Falcão, A. X., Stolfi, J., and de Alencar Lotufo, R. The image foresting transform: Theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 26, 1 (2004), 19–29.CrossRefGoogle Scholar
  3. 120.
    Malmberg, F., Strand, R., Zhang, J., and Sclaroff, S. The Boolean map distance: Theory and efficient computation. In International Conference on Discrete Geometry for Computer Imagery (2017), Springer, pp. 335–346.Google Scholar
  4. 122.
    Maragos, P., and Ziff, R. D. Threshold superposition in morphological image analysis systems. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 12, 5 (1990), 498–504.CrossRefGoogle Scholar
  5. 151.
    Saha, P. K., Wehrli, F. W., and Gomberg, B. R. Fuzzy distance transform: theory, algorithms, and applications. Computer Vision and Image Understanding (CVIU) 86, 3 (2002), 171–190.CrossRefGoogle Scholar
  6. 166.
    Strand, R., Ciesielski, K. C., Malmberg, F., and Saha, P. K. The minimum barrier distance. Computer Vision and Image Understanding (CVIU) 117, 4 (2013), 429–437.CrossRefGoogle Scholar
  7. 184.
    Vincent, L. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing (TIP) 2, 2 (1993), 176–201.CrossRefGoogle Scholar
  8. 188.
    Wei, Y., Wen, F., Zhu, W., and Sun, J. Geodesic saliency using background priors. In European Conference on Computer Vision (ECCV) (2012).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jianming Zhang
    • 1
  • Filip Malmberg
    • 2
  • Stan Sclaroff
    • 3
  1. 1.Adobe Inc.San JoseUSA
  2. 2.Centre for Image AnalysisUppsala UniversityUppsalaSweden
  3. 3.Department of Computer ScienceBoston UniversityBostonUSA

Personalised recommendations