Graded Thread Modules Over the Positive Part of the Witt (Virasoro) Algebra

  • Dmitry MillionshchikovEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 273)


We study \({\mathbb Z}\)-graded thread \(W^+\)-modules \( V=\oplus _i V_i, \, \dim {V_i}=1, -\infty \le k< i < N\le +\infty , \, \dim {V_i}=0, \, {\mathrm{otherwise}}, \) over the positive part \(W^+\) of the Witt (Virasoro) algebra W. There is well-known example of infinite-dimensional (\(k=-\infty , N=\infty \)) two-parametric family \(V_{\lambda , \mu }\) of \(W^+\)-modules induced by the twisted W-action on tensor densities \(P(x)x^{\mu }(dx)^{-\lambda }, \mu , \lambda \in {\mathbb K}, P(x) \in {\mathbb K}[t]\). Another family \(C_{\alpha , \beta }\) of \(W^+\)-modules is defined by the action of two multiplicative generators \(e_1, e_2\) of \(W^+\) as \(e_1f_i=\alpha f_{i+1}\) and \(e_2f_j=\beta f_{j+2}\) for \(i,j \in {\mathbb Z}\) and \(\alpha , \beta \) are two arbitrary constants (\(e_if_j=0, i \ge 3\)).

We classify \((n+1)\)-dimensional graded thread \(W^+\)-modules of three important types for sufficiently large n. New examples of graded thread \(W^+\)-modules different from finite-dimensional quotients of \(V_{\lambda , \mu }\) and \(C_{\alpha , \beta }\) are found.


Witt algebra Visaroro algebra Lie algebras 


  1. 1.
    Bauer, M., Di Francesco, Ph, Itzykson, C., Zuber, J.-B.: Covariant differential equations and singular vectors in Virasoro representations. Nucl. Phys. B. 362(3), 515–562 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chari, V., Pressley, A.: Unitary representations of the Virasoro algebra and a conjecture of Kac. Compos. Math. 67, 315–342 (1988)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Benoist, Y.: Une nilvariété non affine. J. Differ. Geom. 41, 21–52 (1995)CrossRefGoogle Scholar
  4. 4.
    Feigin, B., Fuchs, D.: Homology of the Lie algebras of vector fields on the line. Funct. Anal. Appl. 14(3), 45–60 (1980) (45–60)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Feigin, B.L., Fuchs, D.B., Retakh, V.S.: Massey operations in the cohomology of the infinite-dimensional Lie algebra \(L_1\). In: Lecture Notes in Math, vol. 1346, pp. 13–31. Springer, Zentralblatt Berlin (1988)Google Scholar
  6. 6.
    Fuchs, D.: Cohomology of infinite-dimensional Lie algebras. Consultants Bureau. London (1986)Google Scholar
  7. 7.
    Kac, V.G., Raina, A.K.: Highest weight representations of infinite dimensional Lie algebras. Adv. Ser. Math. Phys. 2 (1988)Google Scholar
  8. 8.
    Iohara, K., Koga, Y.: Representation theory of the Virasoro algebra. Springer Monographs in Math. Springer (2010)Google Scholar
  9. 9.
    Kaplansky, I., Santharoubane, L.J.: Harish Chandra modules over the Virasoro algebra. Publ. Math. Sci. Res. Inst. 4, 217–231 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Martin, C., Piard, A.: Indecomposable modules for the Virasoro Lie algebra and a conjecture of Kac. Commun. Math. Phys. 137, 109–132 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mathieu, O.: Classification of Harish-Chandra modules over the Virasoro Lie algebra. Invent. Math. 107, 225–234 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Millionshchikov, D.: Algebra of formal vector fields on the line and Buchstaber’s conjecture. Funct. Anal. Appl. 43(4), 264–278 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Millionshchikov, D.: Virasoro singular vectors. Funct. Anal. Appl. 50(3), 219–224 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Milnor, J.: On fundamental groups of complete affinely flat manifolds. Adv. Math. 25, 178–187 (1977)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mechanics and MathematicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations