Advertisement

Elliptic Calogero-Moser Hamiltonians and Compatible Poisson Brackets

  • Vladimir SokolovEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 273)

Abstract

We show that the classical elliptic \(A_2\)-Calogero-Moser Hamiltonian is generated by the elliptic quadratic Poisson bracket of the \(q_{9,2}(\tau )\)-type.

Keywords

Calogero-Moser Hamiltonians Elliptic Calogero-Moser Hamiltonians Poisson brackets 

Notes

Acknowledgements

The author thanks A. Bolsinov and A. Odesskii for very useful discussions. He was supported by RFBI-grant No. 16-01-00289. Also, this work was carried out within the framework of the State Programme of the Ministry of Education and Science of the Russian Federation, project 1.12873.2018/12.1.

References

  1. 1.
    Calogero, F.: Solution of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Feigin, B.L., Odesskii, A.V.: Functional realization of some elliptic Hamiltonian structure and bosonization of the corresponding quantum algebras. In: Pakuliak, S., et al. (eds.) Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Science Series II: Mathematics, Physics and Chemistry, vol. 35, pp. 109–122. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  3. 3.
    Matushko, M.G., Sokolov, V.V.: Polynomial forms for quantum elliptic Calogero-Moser Hamiltonians. Theor. Math. Phys. 191(1), 480–490 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Rühl, W., Turbiner, A.V.: Exact solvability of the Calogero and Sutherland models. Mod. Phys. Lett. A 10, 2213–2222 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Sokolov, V.V., Odesskii, A.V.: Compatible lie brackets related to elliptic curve. J. Math. Phys. 47(1), 013506 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sokolov, V.V., Turbiner, A.V.: Quasi-exact-solvability of the \(A_{2}\) Elliptic model: algebraic form, \(sl(3)\) hidden algebra, polynomial eigenfunctions. J. Phys. A, 48, 155201 (2015)Google Scholar
  8. 8.
    Vinberg, E.B.: On certain commutative subalgebras of a universal enveloping algebra. Math. USSR-Izvestiya 36(1), 1–22 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.Centre of Integrable SystemsP.G. Demidov Yaroslavl State UniversityYaroslavlRussia
  3. 3.Federal University of ABCSanto AndréBrazil

Personalised recommendations