Movable Poles of Painlevé I Transcendents and Singularities of Monodromy Data Manifolds

  • V. Yu. NovokshenovEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 273)


We consider a classification of solutions to the first Painlevé  equation with respect to distribution of their poles at infinity. A connection is found between singularities of two-dimensional monodromy data manifold and analytic properties of solutions parametrized by this manifold. It is proved that solutions of Painlevé  I equation have no poles at infinity at a given critical sector of the complex plane iff the related monodromy data belong to the singular submanifold. Such solutions coincide with the class of “truncated” solutions (intégrales tronquée) by classification of P. Boutroux. We derive further classification based on decomposition of singularities of monodromy data manifold.


Painlevé equations Tronquée solution Distribution of poles Riemann-hilbert problem Complex manifold singularities Padé approximations Complex wkb method 



This paper was partly supported by the Russian Science Foundation (RSCF grant 17-11-01004).


  1. 1.
    Bertola, M.: On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation. Nonlinearity 25, 1179–1185 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boutroux, P.: Recherches sur les transcendentes de M. Painlevé et l’étude asymptotique des équations différentielles du seconde ordre. Ann. École Norm. 30, 265–375 (1913); Ann.École Norm. 31, 99–159 (1914)Google Scholar
  3. 3.
    Clarkson, P.A.: Painlevé equations—nonlinear special functions. In: Marcell‘ an, F., van Assche, W. (eds.) Orthogonal Polynomials and Special Functions: computation and Application. Lecture Notes in Mathematics, vol. 1883, pp. 331–411. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Costin, O., Huang, M., Tanveer, S.: Proof of the Dubrovin conjecture of the tritronquée solutions of \(P_I\). Duke Math. J. 163, 665–704 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dubrovin, B., Grava, T., Klein, C.: On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation. J. Nonlin. Sci. 19, 57–94 (2009)CrossRefGoogle Scholar
  6. 6.
    Fokas, A.S., Its, A.R., Kapaev A.A., Novokshenov, V.Yu.: Painlevé Transcendents. In: The Riemann-Hilbert Approach. Mathematics Surveys and Monographs, vol. 128. Amer. Math. Soc., Providence, RI (2006)Google Scholar
  7. 7.
    Fornberg, B., Weideman, J.A.C.: A numerical methology for the Painlevé equations. J. Comp. Phys. 230, 5957–5973 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gromak, V.I., Laine, I., Shimomura, S.: Painlevé equations in the complex plane. de Gruyter Studies in Mathematics, vol. 28. Walter de Gruyter, Berlin (2002)Google Scholar
  9. 9.
    Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1980)CrossRefGoogle Scholar
  10. 10.
    Its, A.R., Novokshenov, V.Yu.: The Isomonodromy deformation method in the theory of Painlevé equations. Lecture Notes in Mathematics, vol. 1191. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  11. 11.
    Kapaev, A.A.: Quasi-linear Stokes phenomenon for the Painlevé first equation. J. Phys. A Math. Gen. 37, 11149–11167 (2004)CrossRefGoogle Scholar
  12. 12.
    Kapaev, A.A., Kitaev, A.V.: Connection formulae for the first Painlevé transcendent in the complex plane. Lett. Math. Phys. 27, 243–252 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kavai, T., Takei, Y.: Algebraic Analysis of Singular Perturbation Theory. Amer. Math. Soc. Math. Monographs, vol. 227. Providence, RI (2005)Google Scholar
  14. 14.
    Kitaev, A.V.: The isomonodromy technique and the elliptic asymptotics of the first Painlevé transcendent. Algebra i Analiz. 5, 197–211 (1993)zbMATHGoogle Scholar
  15. 15.
    Novokshenov, V.Yu.: Boutroux ansatz for the second Painlevé equation in the complex domain. Izv. Akad. Nauk SSSR, series matem, vol. 54, pp. 1229–1251 (1990)Google Scholar
  16. 16.
    Novokshenov, V.Y.: Padé approximations of Painlevé I and II transcendents. Theor. Math. Phys. 159, 852–861 (2009)CrossRefGoogle Scholar
  17. 17.
    Novokshenov, V.Y.: Special solutions of the first and second painleve equations and singularities of the monodromy data manifold. Proc. Steklov Inst. Math. 281(Suppl. 1), S1–S13 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159, 151–174 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Mathematics RASUfaRussia

Personalised recommendations