Design of the Cogno Web Observatory for Characterizing Online Social Cognition

  • Srinath SrinivasaEmail author
  • Raksha Pavagada Subbanarasimha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11297)


It is important to occasionally remember that the World Wide Web (WWW) is the largest information network the world has ever seen. Just about every sphere of human activity has been altered in some way, due to the web. Our understanding of the web has been evolving over the past few decades ever since it was born. In its early days, the web was seen just as an unstructured hypertext document collection. However, over time, we have come to model the web as a global, participatory, socio-cognitive space. One of the consequences of modeling the web as a space rather than as a tool, is the emergence of the concept of Web observatories. These are application programs that are meant to observe and curate data about online phenomena. This paper details the design of a Web observatory called Cogno, that is meant to observe online social cognition. Social cognition refers to the way social discourses lead to the formation of collective worldviews. As part of the design of Cogno, we also propose a computational model for characterizing social cognition. Social media is modeled as a “marketplace of opinions” where different opinions come together to form “narratives” that not only drive the discourse, but may also bring some form of returns to the opinion holders. The problem of characterizing social cognition is defined as breaking down a social discourse into its constituent narratives, and for each narrative, its key opinions, and the key people driving the narrative.


Web observatory Social cognition Opinion marketplace Abstraction Expression Social media 


  1. 1.
    Adamic, L.A., Lento, T.M., Adar, E., Ng, P.C.: Information evolution in social networks. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM 2016, pp. 473–482. ACM, New York (2016).
  2. 2.
    Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 65–74. ACM, New York (2011).
  3. 3.
    Bhanushali, A., Subbanarasimha, R.P., Srinivasa, S.: Identifying opinion drivers on social media. OTM 2017. LNCS, vol. 10574, pp. 242–253. Springer, Cham (2017). Scholar
  4. 4.
    Borge-Holthoefer, J., Perra, N., Gonçalves, B., González-Bailón, S., Arenas, A., Moreno, Y., Vespignani, A.: The dynamics of information-driven coordination phenomena: a transfer entropy analysis. Sci. Adv. 2(4), e1501158 (2016). Scholar
  5. 5.
    Ceri, S., Bozzon, A., Brambilla, M., Della Valle, E., Fraternali, P., Quarteroni, S.: Web information retrieval. Springer, Heidelberg (2013). Scholar
  6. 6.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring user influence in twitter: the million follower fallacy. In Proceedings of International AAAI Conference on Weblogs and Social, ICWSM 2010 (2010)Google Scholar
  7. 7.
    Craswell, N., Hawking, D.: Web information retrieval. Information Retrieval: Searching in the 21st Century, pp. 85–101 (2009)Google Scholar
  8. 8.
    Desikan, P., Srivastava, J., Kumar, V., Tan, P.N.: Hyperlink analysis-techniques & applications. Army High Performance Computing Center Technical Report (2002)Google Scholar
  9. 9.
    Ferrara, E., JafariAsbagh, M., Varol, O., Qazvinian, V., Menczer, F., Flammini, A.: Clustering memes in social media (2013). CoRR abs/1310.2665.
  10. 10.
    Ferrara, E., Varol, O., Menczer, F., Flammini, A.: Detection of promoted social media campaigns. In: Tenth International AAAI Conference on Web and Social Media, pp. 563–566 (2016)Google Scholar
  11. 11.
    Muñoz García, O., García-Silva, A., Corcho, O., de la Higuera Hernández, M., Navarro, C.: Identifying topics in social media posts using DBpedia. In: Jean-Dominique, M., Hrasnica, H., Genoux, F. (eds.) Proceedings of the NEM Summit, NEM Initiative, Eurescom - The European Institute for Research and Strategic Studies in Telecommunications - GmbH, Heidelberg, Germany, pp. 81–86, September 2011Google Scholar
  12. 12.
    Ghosh, S., Sharma, N., Benevenuto, F., Ganguly, N., Gummadi, K.: Cognos: Crowdsourcing search for topic experts in microblogs. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2012, pp. 575–590. ACM, New York (2012).
  13. 13.
    Hall, W., et al.: The southampton university web observatory. In: 1st International workshop on Building Web Observatories, ACM Web Science 2013, 1–3 May 2013, April 2013.
  14. 14.
    Hendler, J., Berners-Lee, T.: From the semantic web to social machines: a research challenge for ai on the world wide web. Artif. Intell. 174(2), 156–161 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Henzinger, M.R.: Hyperlink analysis for the web. IEEE Internet Comput. 1, 45–50 (2001)CrossRefGoogle Scholar
  16. 16.
    Lewandowski, D.: Web information retrieval. Inf. Wissenschaft Praxis 56(1), 5–12 (2005)MathSciNetGoogle Scholar
  17. 17.
    Li, H., Mukherjee, A., Liu, B., Kornfield, R., Emery, S.: Detecting campaign promoters on twitter using markov random fields. In: Proceedings of the 2014 IEEE International Conference on Data Mining, ICDM 2014, pp. 290–299. IEEE Computer Society, Washington, DC (2014).
  18. 18.
    Madaan, A., Tiropanis, T., Srinivasa, S., Hall, W.: Observlets: empowering analytical observations on web observatory. In: Proceedings of the 25th International Conference Companion on World Wide Web, WWW 2016 Companion, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, pp. 775–780 (2016).
  19. 19.
    McKelvey, K., Menczer, F.: Design and prototyping of a social media observatory. In: Proceedings of the 22nd International Conference on World Wide Web. WWW ’13 Companion, pp. 1351–1358. ACM, New York (2013).
  20. 20.
    Mihaila, G.A.: WebSQL: an SQL-like query language for the World Wide Web. University of Toronto (1996)Google Scholar
  21. 21.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). CoRR abs/1301.3781.
  22. 22.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 3111–3119. Curran Associates, Inc., New York (2013)Google Scholar
  23. 23.
    Pal, A., Counts, S.: Identifying topical authorities in microblogs. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 45–54. ACM, New York (2011).
  24. 24.
    Park, H.W.: Hyperlink network analysis: a new method for the study of social structure on the web. Connections 25(1), 49–61 (2003)Google Scholar
  25. 25.
    Qiang, J., Chen, P., Wang, T., Wu, X.: Topic modeling over short texts by incorporating word embeddings (2016). CoRR abs/1609.08496.
  26. 26.
    Simpson, R., Page, K.R., De Roure, D.: Zooniverse: Observing the world’s largest citizen science platform. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014 Companion, pp. 1049–1054. ACM, New York (2014).
  27. 27.
    Sivaraman, N.K., Srinivasa, S.: Abstractions, expressions and online collectives. In: Proceedings of the ACM Web Science Conference, WebSci 2015, pp. 58:1–58:2. ACM, New York (2015).
  28. 28.
    Smart, P.R., Shadbolt, N.R.: Social machines. In: Encyclopedia of Information Science and Technology, 3rd Edn., pp. 6855–6862. IGI Global, Hershey (2015)Google Scholar
  29. 29.
    Steinskog, A., Therkelsen, J., Gambäck, B.: Twitter topic modeling by tweet aggregation. In: NODALIDA (2017)Google Scholar
  30. 30.
    Tinati, R., Wang, X., Tiropanis, T., Hall, W.: Building a real-time web observatory. IEEE Internet Comput. 19(6), 36–45 (2015)CrossRefGoogle Scholar
  31. 31.
    Tiropanis, T., Hall, T., Shadbolt, W., De Roure, D., Contractor, N., Hendler, J.: The web science observatory. IEEE Intell. Syst. 28(2), 100–104 (2013). Scholar
  32. 32.
    Tiropanis, T., Hall, W., Hendler, J., de Larrinaga, C.: The web observatory: a middle layer for broad data. Big Data 2(3), 129–133 (2014). Scholar
  33. 33.
    Wagner, C., Liao, V., Pirolli, P., Nelson, L., Strohmaier, M.: It’s not in their tweets: modeling topical expertise of twitter users. In: Proceedings of the 2012 ASE/IEEE International Conference on Social Computing and 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust, SOCIALCOM-PASSAT 2012, pp. 91–100. IEEE Computer Society, Washington, DC (2012).
  34. 34.
    Wang, X., et al.: Building a web observatory for south Australian government: Supporting an age friendly population. Web Science Conference, June 2015Google Scholar
  35. 35.
    Xiong, F., Liu, Y.: Opinion formation on social media: an empirical approach. Chaos Interdiscip. J. Nonlinear Sci. 24(1), 013130 (2014). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Srinath Srinivasa
    • 1
    Email author
  • Raksha Pavagada Subbanarasimha
    • 1
  1. 1.International Institute of Information TechnologyBangaloreIndia

Personalised recommendations