Parallel Transport of Surface Deformations from Pole Ladder to Symmetrical Extension

  • Shuman JiaEmail author
  • Nicolas Duchateau
  • Pamela Moceri
  • Maxime Sermesant
  • Xavier Pennec
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11167)


Cardiac motion contains information underlying disease development, and complements the anatomical information extracted for each subject. However, normalization of temporal trajectories is necessary due to anatomical differences between subjects. In this study, we encode inter-subject shape variations and temporal deformations in a common space of diffeomorphic registration. They are parameterized by stationary velocity fields. Previous normalization algorithms applied in medical imaging were first order approximations of parallel transport. In contrast, pole ladder was recently shown to be a third order scheme in general affine connection spaces and exact in one step in affine symmetric spaces. We further improve this procedure with a more symmetric mapping scheme, which relies on geodesic symmetries around mid-points. We apply the method to analyze cardiac motion among pulmonary hypertension populations. Evaluation is performed on a 4D cardiac database, with meshes of the right-ventricle obtained by commercial speckle-tracking from echo-cardiogram. We assess the stability of the algorithms by computing their numerical inverse error. Our method turns out to be very accurate and efficient in terms of compactness for subspace representation.



Part of the research was funded by the Agence Nationale de la Recherche (ANR)/ERA CoSysMed SysAFib project. The authors would like to thank fellows from Hôpital Pasteur, CHU de Nice, France for preparing the data.


  1. 1.
    Bai, W., et al.: A bi-ventricular cardiac atlas built from 1000+ high resolution mr images of healthy subjects and an analysis of shape and motion. Med. Image Anal. 26(1), 133–145 (2015)CrossRefGoogle Scholar
  2. 2.
    Bossa, M., Hernandez, M., Olmos, S.: Contributions to 3D diffeomorphic atlas estimation: application to brain images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 667–674. Springer, Heidelberg (2007). Scholar
  3. 3.
    Davis, M.H., Khotanzad, A., Flamig, D.P., Harms, S.E.: A physics-based coordinate transformation for 3-D image matching. IEEE Trans. Med. Imaging 16(3), 317–328 (1997)CrossRefGoogle Scholar
  4. 4.
    Duchateau, N., et al.: A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Med. Image Anal. 15(3), 316–328 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gavrilov, A.V.: Algebraic properties of covariant derivative and composition of exponential maps. Matematicheskie Trudy 9(1), 3–20 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Lorenzi, M., Ayache, N., Pennec, X.: Schild’s ladder for the parallel transport of deformations in time series of images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 463–474. Springer, Heidelberg (2011). Scholar
  7. 7.
    Lorenzi, M., Pennec, X.: Efficient parallel transport of deformations in time series of images: from Schild’s to pole ladder. J. Math. Imaging Vis. 50(1–2), 5–17 (2014)CrossRefGoogle Scholar
  8. 8.
    Louis, M., Bône, A., Charlier, B., Durrleman, S.: Parallel transport in shape analysis: a scalable numerical scheme. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017. LNCS, vol. 10589, pp. 29–37. Springer, Cham (2017). Scholar
  9. 9.
    Moceri, P., et al.: Three-dimensional right-ventricular regional deformation and survival in pulmonary hypertension. Eur. Heart J. Cardiovasc. Imaging 19, 450–458 (2017)CrossRefGoogle Scholar
  10. 10.
    Pennec, X.: Parallel transport with pole ladder: a third order scheme in affine connection spaces which is exact in affine symmetric spaces. arXiv preprint arXiv:1805.11436 (2018)
  11. 11.
    Qiu, A., Younes, L., Miller, M.I., Csernansky, J.G.: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer’s type. NeuroImage 40(1), 68–76 (2008)CrossRefGoogle Scholar
  12. 12.
    Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). Scholar
  13. 13.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: a demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008). Scholar
  14. 14.
    Younes, L.: Jacobi fields in groups of diffeomorphisms and applications. Q. Appl. Math. 65, 113–134 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Shuman Jia
    • 1
    Email author
  • Nicolas Duchateau
    • 2
  • Pamela Moceri
    • 1
    • 3
  • Maxime Sermesant
    • 1
  • Xavier Pennec
    • 1
  1. 1.Université Côte d’Azur, Epione Project, InriaSophia AntipolisFrance
  2. 2.Creatis, CNRS UMR5220, INSERM U1206, Université Lyon 1LyonFrance
  3. 3.Hôpital Pasteur, CHU de NiceNiceFrance

Personalised recommendations