Deformetrica 4: An Open-Source Software for Statistical Shape Analysis

  • Alexandre BôneEmail author
  • Maxime Louis
  • Benoît Martin
  • Stanley Durrleman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11167)


Deformetrica is an open-source software for the statistical analysis of images and meshes. It relies on a specific instance of the large deformation diffeomorphic metric mapping (LDDMM) framework, based on control points: local momenta vectors offer a low-dimensional and interpretable parametrization of global diffeomorphims of the 2/3D ambient space, which in turn can warp any single or collection of shapes embedded in this physical space. Deformetrica has very few requirements about the data of interest: in the particular case of meshes, the absence of point correspondence can be handled thanks to the current or varifold representations. In addition to standard computational anatomy functionalities such as shape registration or atlas estimation, a bayesian version of atlas model as well as temporal methods (geodesic regression and parallel transport) are readily available. Installation instructions, tutorials and examples can be found at


Statistical shape analysis Computational anatomy Large deformation diffeomorphic metric mapping Open-source software 



This work has been partly funded by the European Research Council (ERC) under grant agreement No 678304, European Union’s Horizon 2020 research and innovation program under grant agreement No. 666992, and the program Investissements d’avenir ANR-10-IAIHU-06.


  1. 1.
    Allassonnière, S., Kuhn, E., Trouvé, A.: Construction of bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli 16(3), 641–678 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bône, A., Colliot, O., Durrleman, S.: Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9271–9280 (2018)Google Scholar
  3. 3.
    Bône, A., et al.: Prediction of the progression of subcortical brain structures in Alzheimer’s disease from baseline. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen-2017. LNCS, vol. 10551, pp. 101–113. Springer, Cham (2017). Scholar
  4. 4.
    Charlier, B., Feydy, J., Glaunès, J.A., Trouvé, A.: An efficient kernel product for automatic differentiation libraries, with applications to measure transport (2017)Google Scholar
  5. 5.
    Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6(4), 2547–2580 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Delyon, B., Lavielle, M., Moulines, E.: Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 94–128 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Durrleman, S., et al.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)CrossRefGoogle Scholar
  8. 8.
    Fishbaugh, J., Prastawa, M., Gerig, G., Durrleman, S.: Geodesic regression of image and shape data for improved modeling of 4D trajectories. In: ISBI 2014–11th International Symposium on Biomedical Imaging, pp. 385–388, April 2014Google Scholar
  9. 9.
    Fletcher, T.: Geodesic regression on Riemannian manifolds. In: Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy-Geometrical and Statistical Methods for Modelling Biological Shape Variability, pp. 75–86 (2011)Google Scholar
  10. 10.
    Gori, P., et al.: A Bayesian framework for joint morphometry of surface and curve meshes in multi-object complexes. Med. Image Anal. 35, 458–474 (2017)CrossRefGoogle Scholar
  11. 11.
    Kühnel, L., Sommer, S.: Computational anatomy in Theano. In: Cardoso, M.J., et al. (eds.) GRAIL/MFCA/MICGen-2017. LNCS, vol. 10551, pp. 164–176. Springer, Cham (2017). Scholar
  12. 12.
    Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Louis, Maxime, Bône, Alexandre, Charlier, Benjamin, Durrleman, Stanley: Parallel transport in shape analysis: a scalable numerical scheme. In: Nielsen, Frank, Barbaresco, Frédéric (eds.) GSI 2017. LNCS, vol. 10589, pp. 29–37. Springer, Cham (2017). Scholar
  14. 14.
    Louis, M., Charlier, B., Jusselin, P., Susovan, P., Durrleman, S.: A fanning scheme for the parallel transport along geodesics on Riemannian manifolds. SIAM J. Numer. Anal. 56, 2563–2584 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Paszke, A., et al.: Pytorch: tensors and dynamic neural networks in python with strong GPU acceleration, May 2017Google Scholar
  17. 17.
    Thompson, D.W., et al.: On growth and form (1942)Google Scholar
  18. 18.
    Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005). Scholar
  19. 19.
    Younes, L.: Shapes and Diffeomorphisms, vol. 171. Springer, Heidelberg (2010). Scholar
  20. 20.
    Zhang, M., Singh, N., Fletcher, P.T.: Bayesian estimation of regularization and atlas building in diffeomorphic image registration. IPMI 23, 37–48 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alexandre Bône
    • 1
    • 2
    • 3
    • 4
    • 5
  • Maxime Louis
    • 1
    • 2
    • 3
    • 4
    • 5
  • Benoît Martin
    • 1
    • 2
    • 3
    • 4
    • 5
  • Stanley Durrleman
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Institut du Cerveau et de la Moelle épinière, ICMParisFrance
  2. 2.Inserm, U 1127ParisFrance
  3. 3.CNRS, UMR 7225ParisFrance
  4. 4.Sorbonne UniversitéParisFrance
  5. 5.Inria, Aramis project-teamParisFrance

Personalised recommendations