Advertisement

Polymer Composite Strategies in Cancer Therapy, Augment Stem Cell Osteogenesis, Diagnostics in the Central Nervous System, and Drug Delivery

  • Mariappan RajanEmail author
  • Rajendran Amarnath Praphakar
  • Periyakaruppan Pradeepkumar
Chapter
Part of the Lecture Notes in Bioengineering book series (LNBE)

Abstract

This chapter covers the wide knowledge about polymer composite strategies in cancer therapy, augment stem cell osteogenesis, diagnostics in the central nervous system, and drug delivery. Many polymer composites were applied for the diagnosis and curing of cancer diseases. These areas include different types of polymer composites, their degradation, drug release mechanism from the polymer composites, and their needfulness for cancer therapy. In addition, this chapter explores the augmentation stem cell osteogenesis including morphology, environment, and polymer nanocomposites for osteogenesis. In the end, we focus on the drug delivery system for central nervous system.

Keywords

Cancer Central nervous system Drug delivery system Osteogenesis Polymer composites 

References

  1. Ahmed F, Pakunlu RI, Srinivas G, Brannan A, Bates F (2006a) Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm 3:340CrossRefGoogle Scholar
  2. Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T (2006b) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Controlled Release 116:150CrossRefGoogle Scholar
  3. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed 14:1–16CrossRefGoogle Scholar
  4. Al-Dimassi S, Abou-Antoun T, El-Sibai M (2014) Cancer cell resistance mechanisms: a mini review. Clin Transl Oncol 16:511–516CrossRefGoogle Scholar
  5. Amarnath Praphakar R, Munusamy MA, Sadasivuni KK, Rajan M (2016) Targeted delivery of rifampicin to tuberculosis-infected macrophages: design, in-vitro, and in-vivo performance of rifampicin loaded poly(ester amide)s nanocarriers. Int J Pharm 513(1–2):628–635CrossRefGoogle Scholar
  6. Amarnath Praphakar R, Alarfaj AA, Munusamy MA, Azger Dusthackeer VN, Suresh Kumar S, Rajan M (2017a) Phosphorylated κ-carrageenan-facilitated chitosan nanovehicle for sustainable anti-tuberculosis multi drug delivery. ChemistrySelect 2:7100–7107CrossRefGoogle Scholar
  7. Amarnath Praphakar R, Munusamy MA, Alarfaj AA, Suresh Kumar S, Rajan M (2017b) Zn2+ cross-linked sodium alginate-g-allylamine-mannose polymeric carrier on rifampicin for macrophage targeting tuberculosis nanotherapy. New J Chem 41:11324CrossRefGoogle Scholar
  8. Amarnath Praphakar R, Jeyaraj M, Mehnath S, Higuchi A, Ponnamma D, Kishor Kumar S, Rajan M (2018a) pH-sensitive guar gum grafted lysine-β-cyclodextrin drug carrier for controlled releases on cancer cells. J Mater Chem B 6:1519–1530CrossRefGoogle Scholar
  9. Amarnath Praphakar R, Shakila H, Azger Dusthackeer VN, Munusamy MA, Kumar S, Rajan M (2018b) Mannose conjugated multi-layered polymeric nano carrier system for controlled and targeted release on alveolar macrophages. Polym Chem 9:656–667CrossRefGoogle Scholar
  10. Anitha A, Maya S, Sivaram AJ, Mony U, Jayakumar R (2016) Combinatorial nanomedicines for colon cancer therapy. Wiley Interdisc Rev Nanomed Nanobiotechnol 8:151–159CrossRefGoogle Scholar
  11. Aymard P, Martin DR, Plucknett K, Foster TJ, Clark AH, Norton IT (2001) Influence of thermal history on the structural and mechanical properties of agarose gels. Biopolymers 59(3):131–144CrossRefGoogle Scholar
  12. Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 61:768CrossRefGoogle Scholar
  13. Baeza A, Colilla M, Vallet-Regi M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12(2):319–337CrossRefGoogle Scholar
  14. Baldwin JG, Wagner F, Martine LC, Holzapfel BM, Theodoropoulos C, Bas O, Savi FM, Werner C, DeJuan-Pardo EM, Hutmacher DW (2017) Periosteum tissue engineering in an orthotopic in vivo platform. Biomaterials 121:193–204CrossRefGoogle Scholar
  15. Bara JJ, Richards RG, Alini M, Stoddart MJ (2014) Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32(7):1713–1723CrossRefGoogle Scholar
  16. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25CrossRefGoogle Scholar
  17. Bhadra D, Bhadra S, Jain P, Jain NK (2002) Pegnology: a review of PEG-ylated systems. Pharmazie 57:5Google Scholar
  18. Bildstein L, Dubernet C, Couvreur P (2011) Prodrug-based intracellular delivery of anticancer agents. Adv Drug Deliv Rev 63:3–23CrossRefGoogle Scholar
  19. Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, Daban A, Bardet E, Beny A, Ollier JC (2006) Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355:1114–1123CrossRefGoogle Scholar
  20. Byrne JD, Betancourt TL, Brannon P (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626CrossRefGoogle Scholar
  21. Cabral H, Kataoka K (2014) Progress of drug-loaded polymeric micelles into clinical studies. J Controlled Release 190:465–476CrossRefGoogle Scholar
  22. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132CrossRefGoogle Scholar
  23. Calvo P, Gouritin B, Chacun H, Desmaële D, D’Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P (2001) Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharmaceut Res 18(8):1157–1166CrossRefGoogle Scholar
  24. Chen GY, Pang DWP, Hwang SM, Tuan HY, Hu YC (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2):418–427CrossRefGoogle Scholar
  25. Cheng Y, Dai Q, Morshed RA, Fan X, Wegscheid ML, Wainwright DA, Han Y, Zhang L, Auffinger B, Tobias AL, Rincón E, Thaci B, Ahmed AU, Warnke PC, He C, Lesniak MS (2014) Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small 10(24):5137–5150Google Scholar
  26. Cooper PD (1993) Activators and inhibitors of complement. Kluwer Academic Publishers, Springer, NetherlandsGoogle Scholar
  27. Cserjesi P, Brown D, Ligon KL, Lyons GE, Copeland NG, Gilbert DJ, Jenkins NA, Olson EN (1995) Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 121:1099–1110Google Scholar
  28. Cui Y, Xu Q, Chow PK, Wang D, Wang CH (2013) Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 34(33):8511–8520CrossRefGoogle Scholar
  29. Depan D, Girase B, Shah JS, Misra RD (2011) Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater 7(9):3432–3445CrossRefGoogle Scholar
  30. Dong J, Liao L, Shi L, Tan Z, Fan Z, Li S, Lu Z (2014) A bioresorbable cardiovascular stent prepared from L-lactide, trimethylene carbonate and glycolide terpolymers. Polym Eng Sci 54(6):1418–1426CrossRefGoogle Scholar
  31. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cba1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754CrossRefGoogle Scholar
  32. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701CrossRefGoogle Scholar
  33. Egusquiaguirre SP, Igartua M, Hernandez RM, Pedraz JL (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14:83–93CrossRefGoogle Scholar
  34. Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL (2015) Polymeric nanostructures for imaging and therapy. Chem Rev 115:10967–11011CrossRefGoogle Scholar
  35. Emal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Cancer J Clin 61:69–90CrossRefGoogle Scholar
  36. Eyckmans J (2006) Periosteum derived progenitor cells in bone tissue engineeringGoogle Scholar
  37. Fadiran OO, Girouard N, Meredith JC (2018) Pollen fillers for reinforcing and strengthening of epoxy composites. Emergent Mater 1(1–2):95–103CrossRefGoogle Scholar
  38. Fang JH, Lai YH, Chiu TL, Chen YY, Hu SH, Chen SY (2014) Magnetic core-shell nanocapsules with dual-targeting capabilities and co-delivery of multiple drugs to treat brain gliomas. Adv Healthc Mater 3(8):1250–1260CrossRefGoogle Scholar
  39. Forbes SJ, Rosenthal N (2014) Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 20(8):857–869CrossRefGoogle Scholar
  40. Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm 415:34–52CrossRefGoogle Scholar
  41. Fu J, Chen T, Wang M, Yang N, Li S, Wang Y, Liu X (2013) Acid and alkaline dual stimuliresponsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano 7(12):11397–11408CrossRefGoogle Scholar
  42. Gao K, Jiang X (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharmaceut 310(1):213–219CrossRefGoogle Scholar
  43. Gao H, Zhang S, Cao S, Yang Z, Pang Z, Jiang X (2014) Angiopep–2 and activatable cell-penetrating peptide dual functionalized nanoparticles for systemic glioma-targeting delivery. Mol Pharm 11(8):2755–2763CrossRefGoogle Scholar
  44. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27CrossRefGoogle Scholar
  45. Gillies ER, Frechet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today 10:35–43CrossRefGoogle Scholar
  46. Girase B, Shah JS, Misra RDK (2012) Cellular mechanics of modulated osteoblasts functions in graphene oxide reinforced elastomers. Adv Eng Mater 14(4):B101–B111CrossRefGoogle Scholar
  47. Govindaraj D, Rajan M (2018) Coating of bio-mimetic minerals-substituted hydroxyapatite on surgical grade stainless steel 316L by electrophoretic deposition for hard tissue applications. IOP Conf Series Mater Sci Eng 314(1):012029CrossRefGoogle Scholar
  48. Govindaraj D, Rajan M, Hatamleh AA, Munusamy MA, Alarfa AA, Sadasivuni KK, Kumar SS (2017) The synthesis, characterization and in vivo study of mineral substituted hydroxyapatite for prospective bone tissue rejuvenation applications. Nanomed Nanotechnol Biol Med 13(8):2661–2669CrossRefGoogle Scholar
  49. Govindaraj D, Pradeepkumar P, Rajan M (2018) Synthesis of morphology tuning multi mineral substituted apatite nanocrystals by novel natural deep eutectic solvents. Mater Discov 9:11–15CrossRefGoogle Scholar
  50. Grund S, Bauer M, Fischer D (2011) Polymers in drug delivery—state of the art and future trends. Adv Eng Mater 13:B61–B87CrossRefGoogle Scholar
  51. Gu Z, Biswas A, Joo KI, Hu B, Wang P, Tang Y (2010) Probing protease activity by single-fluorescent-protein nanocapsules. Chem Commun 46(35):6467–6469CrossRefGoogle Scholar
  52. Hakeem A, Duan R, Zahid F, Dong C, Wang B, Hong F, Ou X, Jia Y, Lou X, Xia F (2014) Dual stimuli-responsive nano-vehicles for controlled drug delivery: mesoporous silica nanoparticles end-capped with natural chitosan. Chem Commun 50(87):13268–13271CrossRefGoogle Scholar
  53. Haley B, Frenkel E (2008) Nanomedicine and Nanorobotics Urol Oncol: Semin Orig Invest 26:57–64Google Scholar
  54. Hall BK (1998) The embryonic development of bone. Am Sci 76:174–181Google Scholar
  55. Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J (2017) Scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 5:1382–1392Google Scholar
  56. He H, WangY Wen H, Jia X (2014) Dendrimer-based multilayer nanocarrier for potential synergistic paclitaxel–doxorubicin combination drug delivery. RSC Adv 4:3643–3652CrossRefGoogle Scholar
  57. Heinemann V, Douillard JY, Ducreux M, Peeters M (2013a) Angiogenic inhibitors for older patients with advanced colorectal cancer: does the age hold the stage? Cancer Treat Rev 39:592–601CrossRefGoogle Scholar
  58. Heinemann V, Douillard JY, Ducreux M, Peeters M (2013b) Targeted therapy in metastatic colorectal cancer—an example of personalised medicine in action. Cancer Treat Rev 39:592–601CrossRefGoogle Scholar
  59. Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66(17):2873–2896CrossRefGoogle Scholar
  60. Hobel S, Aigner A (2010) Polyethylenimine (PEI)/siRNA-mediated gene knockdown in vitro and in vivo. Mol Biol 623:283Google Scholar
  61. Horton WA (1997) The biology of bone growth. Growth Genet Horm 6(2):1–3Google Scholar
  62. Horwitz EM, Gordon PL, Koo WKK, Marx JC, Neel MD, Ry McNall, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 99(13):8932–8937CrossRefGoogle Scholar
  63. Howard MD, Jay M, Dziubla TD, Lu X (2008) PEGylation of nanocarrier drug delivery systems: state of the art. J Biomed Nanotechnol 4:133CrossRefGoogle Scholar
  64. Huang S, Shao K, Liu Y, Kuang Y, Li J, An S, Guo Y, Ma H, Jiang C (2013) Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 7(3):2860–2871CrossRefGoogle Scholar
  65. Huang ZH, Wei PF, Jin L, Hu XQ, Cai Q, Yang X (2017) Photoluminescent polyphosphazene nanoparticles for in situ simvastatin delivery for improving the osteocompatibility of BMSCs. J Mater Chem B 5:9300–9311CrossRefGoogle Scholar
  66. Hwang DW, Son S, Jang J, Youn H, Lee S, Lee D, Lee YS, Jeong JM, Kim WJ, Lee DS (2011) A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials 32(21):4968–4975CrossRefGoogle Scholar
  67. Ibrahim M, Sabouni R, Husseini GA (2017) Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr Med Chem 24(2):193–214CrossRefGoogle Scholar
  68. Jeyaraj M, Amarnath Praphakar R, Rajan M (2016) Surface functionalization of natural lignin isolated from Aloe barbadensis Miller biomass by atom transfer radical polymerisation for enhanced anticancer efficacy. RSC Adv 6:51310–51319CrossRefGoogle Scholar
  69. Jhaveri A, Deshpande P, Torchilin V (2014) Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 190:352–370CrossRefGoogle Scholar
  70. Joosten EAJ, Bär PR, Gispen WH (1995) Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat. J Neurosci Res 41:481–490CrossRefGoogle Scholar
  71. Kasinathan N, Jagani HV, Alex AT, Volety SM, Rao JV (2015) Strategies for drug delivery to the central nervous system by systemic route. Drug Delivery 22(3):243–257CrossRefGoogle Scholar
  72. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67CrossRefGoogle Scholar
  73. Kim S, Nishimoto SK, Bumgardner JD, Haggard WO, Gaber MW, Yang Y (2010) A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 31(14):4157–4166CrossRefGoogle Scholar
  74. Kim JH, Li Y, Kim MS, Kang SW, Jeong JH, Lee DS (2012) Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers. International Journal of Pharmaceutics 427:435–442CrossRefGoogle Scholar
  75. Knezevic NZ, Trewyn BG, Lin VS (2011) Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chem Commun 47(10):2817–2819CrossRefGoogle Scholar
  76. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288CrossRefGoogle Scholar
  77. Ko E, Yang K, Shin J, Cho SW (2013) Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromol 14(9):3202–3213CrossRefGoogle Scholar
  78. Kodaira H, Tsutsumi Y, Yoshioka Y, Kamada H, Kaneda Y (2004) The targeting of anionized polyvinylpyrrolidone to the renal system. Biomaterials 25:4309CrossRefGoogle Scholar
  79. Koido S, Ohkusa T, Homma S, Namiki Y, Takakura K, Saito K, Ito Z, Kobayashi H, Kajihara M, Uchiyama K, Arihiro S, Arakawa H, Okamoto M, Gong J, Tajiri H (2013) Immunotherapy for colorectal cancer. World J Gastroenterol 19:8531–8542CrossRefGoogle Scholar
  80. Koziara JM, Lockman PR, Allen DD, Mumper RJ (2004) Paclitaxel nanoparticles for the potential treatment of brain tumors. J Controlled Release 99(2):259–269CrossRefGoogle Scholar
  81. Krishnan P, Rajan M, Kumari S, Sakinah S, Priya SP, Amira F, Danjuma L, Ling MP, Fakurazi S, Arulselvan P, Higuchi A, Arumugam R, Alarfaj AA, Munusamy MA, Awang Hamat R, Benelli G, Murugan K, Suresh Kumar S (2017) Efficiency of newly formulated camptothecin with β-cyclodextrin-EDTA-Fe3O4 nanoparticle-conjugated nanocarriers as an anti-colon cancer (HT29) drug. Sci Rep 7:10962CrossRefGoogle Scholar
  82. Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Neuwelt EA (1996) Increasing volume of distribution to the brain with interstitial infusion: dose, rather than convection, might be the most important factor. Neurosurgery 38(4):746–752CrossRefGoogle Scholar
  83. Kumar P, Wu H, McBride JL, Jung KE, Hee Kim M, Davidson BL, Kyung Lee S, Shankar P, Manjunath N (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448(7149):39–43CrossRefGoogle Scholar
  84. Kumar S, Raj S, Kolanthai E, Sood AK, Sampath S, Chatterjee K (2015) Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS Appl Mater Interfaces 7(5):3237–3252CrossRefGoogle Scholar
  85. Lammers T, Kiessling F, Hennink WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899CrossRefGoogle Scholar
  86. Lampe KJ, Kern DS, Mahoney MJ, Bjugstad KB (2011) The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: protein distribution and the glial response. J Biomed Mater Res A 96(3):595–607CrossRefGoogle Scholar
  87. Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32(8):795–803CrossRefGoogle Scholar
  88. Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Frechet JMJ, Dy EE, Szoka FC (2006) A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Natl Acad Sci USA 103:16649–16654CrossRefGoogle Scholar
  89. Lee WC, Lim CHYX, Shi H, Tang LAL, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341CrossRefGoogle Scholar
  90. Lee JH, Shin YC, Lee SM, Jin OS, Kang S, Hong SW, Jeong C, Huh JB, Han D (2015) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5:18833CrossRefGoogle Scholar
  91. Lee SY, Yang CY, Peng CL, Wei MF, Chen KC, Yao CJ, Shieh MJ (2016) A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials 86:92–105CrossRefGoogle Scholar
  92. Levi B, Derrick C, Wan Jason P, Jeong Hyun G, Januszyk M, Montoro D, Sorkin M, Aaron W, James Emily R, Shuli Li N, Quarto N, Lee M, Geoffrey C, Gurtner Longaker MT (2011) CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) signaling. J Biol Chem 286(45):39497–39509CrossRefGoogle Scholar
  93. Li JK, Wang N, Wu XS (1998) Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. J Microencapsul 15(2):163–172CrossRefGoogle Scholar
  94. Lin S, Cao L, Wang Q, Du J, Jiao D, Duan S, Wu J, Gan Q, Jiang X (2018) Tailored biomimetic hydrogel based on a photopolymerised DMP1/MCF/gelatin hybrid system for calvarial bone regeneration. J Mater Chem B 6:414–427CrossRefGoogle Scholar
  95. Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31(5):688–705CrossRefGoogle Scholar
  96. Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12(9–10):635–641CrossRefGoogle Scholar
  97. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502CrossRefGoogle Scholar
  98. Lorenza G, Samuele C, Alberto F, Orietta M (2016) A novel electrostimulated drug delivery system based on PLLA composites exploiting the multiple functions of graphite nanoplatelets. ACS Appl Mater Interfaces 8:24909–24917CrossRefGoogle Scholar
  99. Marcucci F, Lefoulon F (2004) Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discovery Today 9:219CrossRefGoogle Scholar
  100. Martins P, Jesus J, Santos S, Raposo L, Rodrigues CR, Baptista P, Alexandra R (2015a) Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 20(9):16852–16891CrossRefGoogle Scholar
  101. Martins P, Jesus J, Santos S, Raposo L, Rodrigues CR, Baptista P, Alexandra R (2015b) Organic and inorganic nano-systems used in cancer treatment. Molecules 20:16852–16891CrossRefGoogle Scholar
  102. Mehnath S, Rajan M, Sathishkumar G, Amarnath Praphakar R, Jeyaraj M (2017a) Thermoresponsive and pH triggered drug release of cholate functionalized poly(organophosphazene)—polylactic acid co-polymeric nanostructure integrated with ICG. Polymer 133:119–128.  https://doi.org/10.1016/j.polymer.2017.11.020CrossRefGoogle Scholar
  103. Mehnath S, Sathishkumar G, Arivoli A, Rajan M, Praphakar RA, Jeyaraj M (2017b) Green synthesis of AgNPs by Walnut seed extract and its role in photocatalytic degradation of a textile dye effluent. Trans Eng Sci 5(1):31–40Google Scholar
  104. Meyerhardt JA, Mayer RJ (2005) Systemic therapy for colorectal cancer. N Engl J Med 352:476–487CrossRefGoogle Scholar
  105. Missirlis D, Tirelli N, Hubbell JA (2005) Amphiphilic hydrogel nanoparticles. Preparation, characterization, and preliminary assessment as new colloidal drug carriers. Langmuir 21(6):2605–2613CrossRefGoogle Scholar
  106. Monteiro OAC Jr, Airoldi C (1999) Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol 26(2–3):119–128CrossRefGoogle Scholar
  107. Mrlik M, Sobolciak P, Krupa I, Kasak P (2018) Light-controllable viscoelastic properties of a photolabile carboxybetaine ester-based polymer with mucus and cellulose sulfate. Emergent Mater 1(1–2):35–45CrossRefGoogle Scholar
  108. Munusamy MA, Suresh Kumar S, Rajan M, Alarfa AA (2017) Reducing indicator organism escherichia coli in drinking water using chitosan nano coated pot system: an inexpensive technique. Prog Biosci Bioeng 1(1):36–43CrossRefGoogle Scholar
  109. Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, Puglisi G (2006) PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm 325(1–2):172–179CrossRefGoogle Scholar
  110. Nagaraj A, Govindaraj D, Rajan M (2018) Magnesium oxide entrapped Polypyrrole hybrid nanocomposite as an efficient selective scavenger for fluoride ion in drinking water. Emergent Mater 1(1–2):25–33CrossRefGoogle Scholar
  111. Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58(11):1423–1430CrossRefGoogle Scholar
  112. Nance EA, Woodworth GF, Sailor KA, Shih TY, Xu Q, Swaminathan G, Xiang D, Eberhart C, Hanes J (2012) A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Translat Med 4(149):149ra119CrossRefGoogle Scholar
  113. Natarajan J, Madras G, Chatterjee K (2017) Development of graphene oxide-/galactitol polyester-based biodegradable composites for biomedical applications. ACS Omega 2:5545–5556CrossRefGoogle Scholar
  114. Newman KD, McBurney MW (2004) Poly(D, L lactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells. Biomaterials 25(26):5763–5771CrossRefGoogle Scholar
  115. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589CrossRefGoogle Scholar
  116. Oh JK, Park JM (2011) Nanomaterial: impacts on cell biology and medicine. Prog Polym Sci 36:168–189CrossRefGoogle Scholar
  117. Oppenhiem RC (1981) Solid colloidal drug delivery systems: nanoparticles. Int J Pharm 8(3):217CrossRefGoogle Scholar
  118. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cba1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771CrossRefGoogle Scholar
  119. Pardridge WM (2003) Blood-brain barrier drug targeting: the future of brain drug development. MolInterv 3(2):90–105Google Scholar
  120. Park JB, Lee CS, Jang JH, Ghim J, Kim YJ, You S, Hwang D, Suh PG, Ryu SH (2012) Phospholipase signalling networks in cancer. Nat Rev Cancer 12(11):782–792CrossRefGoogle Scholar
  121. Pasut G, Veronese FM (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32:933–961CrossRefGoogle Scholar
  122. Patel T, Zhou J, Piepmeier JM, Saltzman MW (2012) Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 64(7):701–705CrossRefGoogle Scholar
  123. Ponnamma D, Erturk A, Parangusan H, Deshmukh K, Ahamed MB, Al-Maadeed MA (2018) Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 1(1–2):55–65CrossRefGoogle Scholar
  124. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45CrossRefGoogle Scholar
  125. Popelka A, Sobolčiak P, Mrlík M, Nogellova Z, Chodák I, Ouederni M, Al-Maadeed MA, Krupa I (2018) Foamy phase change materials based on linear low-density polyethylene and paraffin wax blends. Emergent Mater 1(1–2):47–54CrossRefGoogle Scholar
  126. Potten CS (1997) Stem cells. London Academic PressGoogle Scholar
  127. Prabhu RH, Patravale VB, Joshi MD (2015) Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomed 10:1001–1018Google Scholar
  128. Pradeepkumar P, Govindaraj D, Jeyaraj M, Munusamy MA, Rajan M (2017) Assembling of multifunctional latex-based hybrid nanocarriers from Calotropis gigantea for sustained (doxorubicin) DOX releases. Biomed Pharmacother 87:461–470CrossRefGoogle Scholar
  129. Pradeepkumar P, Abdallah Mohamed E, Ali Hassan B, Rajan M (2018) Natural solvent-assisted synthesis of amphiphilic co-polymeric nanomicelle for prolonged release of camptothecin delivery. New J Chem 42(12):10366–10375.  https://doi.org/10.1039/c8nj00901eCrossRefGoogle Scholar
  130. Rajan M, Hari Balakrishanan M (2015) Size controlled synthesis of biodegradable nanocarriers for targeted and controlled cancer drug delivery using salting out cation. Bull Mater Sci 39(1):69–77Google Scholar
  131. Rajan M, Raj V (2013a) Gelatin-PEG coated modified Chitosan/Hyaluronidase nanoparticles for tumor-targeted drug delivery and controlled release. Adv Mater Process Charact Appl 269–274Google Scholar
  132. Rajan M, Raj V (2013b) Potential drug delivery applications of chitosan based nanomaterials. Int Rev Chem Eng 5(2). ISSN: 2035-1755Google Scholar
  133. Rajan M, Raj V (2013c) Formation and electrochemical characterization of chitosan/poly lactic acid/poly ethylene glycol/gelatin nanoparticles. A novel biosystem for controlled drug delivery. Carbohydr Polym 98(1):951–958CrossRefGoogle Scholar
  134. Rajan M, Raj V, Al-Arfaj AA, Murugan A (2013) Hyaluronidase enzyme core-5-fluorouracil loaded chitosan-PEG-gelatin polymer nanocomposites targeted and controlled drug delivery vehicles. Int J Pharm 453(2):514–522CrossRefGoogle Scholar
  135. Rajan M, Murugan M, Ponnamma D, Kishor Kumar S, Munusamy MA (2016) Poly-carboxylic acids functionalized chitosan nanocarriers for controlled and targeted anti-cancer drug delivery. Biomed Pharmacother 83:201–211CrossRefGoogle Scholar
  136. Rajan M, Amarnath Praphakar R, Govindaraj D, Arulselvan P, Suresh Kumar S (2017a) Cytotoxicity assessment of palbociclib-loaded chitosan-polypropylene glycol nano vehicles for cancer chemotherapy. Mater Today Chem 6:26–33CrossRefGoogle Scholar
  137. Rajan M, Poorani K, Pradeepkumar P, Jeyanthinath M, Jeyaraj M, Mok Poi L, Palanisamy A, Akon H, Munusamy MA, Arumugam R, Benelli G, Murugan K, Suresh Kumar S (2017b) Magneto-chemotherapy for cervical cancer treatment with camptothecin loaded Fe3O4 functionalized β-cyclodextrin nanovehicles. RSC Adv 7:46271CrossRefGoogle Scholar
  138. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer composite materials; a review. Compos Sci Technol 61:11189–12224CrossRefGoogle Scholar
  139. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRefGoogle Scholar
  140. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913CrossRefGoogle Scholar
  141. Rao M, Ahrlund-Richter L, Kaufman DS (2012) Concise review: cord blood banking, transplantation and induced pluripotent stem cell: success and opportunities. Stem Cells 30(1):55–60CrossRefGoogle Scholar
  142. Richard OC, Oreffo Cooper C, Mason C, Clements M, Cells Mesenchymal Stem (2005) Mesenchymal stem cells. Stem Cell Rev 5(1):169–178Google Scholar
  143. Rottensteiner U, Sarker B, Heusinger D, Dafinova D, Rath SN, Beier JP, Kneser U, Horch RE, Detsch R, Boccaccini AR, Arkudas A (2014) In vitro and in vivo biocompatibility of alginate dialdehyde/gelatin hydrogels with and without nanoscaled bioactive glass for bone tissue engineering applications. Materials 7(3):1957–1974CrossRefGoogle Scholar
  144. Rychahou P, Haque F, Shu Y, Zaytseva Y, Weiss HL, Lee EY, Mustain W, Valentino J, Guo P, Evers BM (2015) Delivery of RNA nanoparticles into colorectal cancer metastases following systemic administration. ACS Nano 9:1108–1116CrossRefGoogle Scholar
  145. Safadi FF, Barbe MF, Abdelmagid SM, Rico MC, Aswad RA, Litvin J, Popoff SN (2009) Popoff bone structure, development and bone biology: bone pathology. https://doi.org/10.1007/978-1-59745-347-9_1Google Scholar
  146. Safadi FF, Barbe MF, Abdelmagid SM, Rico MC, Aswad RA, Litvin J, Popoff SN (2018) Bone structure, development and bone biology: bone pathology. Available from: https://www.researchgate.net/publication/224929158_Bone_Structure_Development_and_Bone_Biology_Bone_Pathology (accessed Dec 20 2018)
  147. Saheb DN, Jog JP (1999) Natural polymer composites: a review. Polym Adv Technol 18:351–363CrossRefGoogle Scholar
  148. Schoenmakers RG, Van de Wetering P, Elbert DL, Hubbell JA (2004) The effect of the linker on the hydrolysis rate of drug-linked ester bonds. J Control Release 95:291–300CrossRefGoogle Scholar
  149. Shahani S (2009) A pH-sensitive guar gum-grafted-lysine-β-cyclodextrin drug carrier for the controlled release of 5-flourouracil into cancer cells. Advanced Drug Delivery Systems: New Developments, New Technologies. bcc ResearchGoogle Scholar
  150. Shrivats AR, Mcdermottand MC, Hollinger JO (2014) Bone tissue engineering: state of the union. Drug Discov Today 19(6):781–786CrossRefGoogle Scholar
  151. Sosic D, Brand-Saberi B, Schmidt C, Christ B, Olson E (1997) Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals. Dev Biol 185:229–243CrossRefGoogle Scholar
  152. Srinivasan S, Jayasree R, Chennazhi KP, Nair SV, Jayakumar R (2012) Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 87(1):274–283CrossRefGoogle Scholar
  153. Stichel CC, Wernermueller H (1998) Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. Prog Neurobiol 56(2):119–148CrossRefGoogle Scholar
  154. Sulistio A, Lowenthal J, Blencowe A, Marie N, Ong L, Sally L, Zhang X, Greg G (2011) Folic acid conjugated amino acid-based star polymers for active targeting of cancer cells. Biomacromolecules 12:3469–3477CrossRefGoogle Scholar
  155. Sumathra M, Rajan M, Alyahya SA, Alharbi NS, Kadaikunnan S, Suresh Kumar S (2017) Development of self-repair nano-rod scaffold materials for implantation of osteosarcoma affected bone tissue. New J Chem.  https://doi.org/10.1039/c7nj03143bCrossRefGoogle Scholar
  156. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364Google Scholar
  157. Teh SW, Mok PL, Rashid MA, Bastion MLC, Ibrahim N, Higuchi A, Murugan K, Rajan M, Suresh Kumar S (2018) Recent updates on treatment of ocular microbial infections by stem cell therapy: a review. Int J Mol Sci 19:558.  https://doi.org/10.3390/ijms19020558. IF- 3.226CrossRefGoogle Scholar
  158. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C, Sirirattanapan J, Mann W, Treuel L, Zellner R, Maskos M, Schild H, Stauber RH (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5:7155–7167CrossRefGoogle Scholar
  159. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S (2012) Drug delivery systems: an updated review. Int J Pharm Investig 2:2–11CrossRefGoogle Scholar
  160. Todaro M, Francipane MG, Medema JP, Stassi G (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138:2151–2162CrossRefGoogle Scholar
  161. Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJM, Schrama JG, Erdkamp FLG, Vos AH, van Groeningen CJ, Sinnige HAM, Richel DJ, Voest EE, Dijkstra JR, Vink-Borger ME, Antonini NF, Mol L, van Krieken JHJM, Dalesio O, Punt CJA, Engl N (2009a) Prognostic value of KRAS genotype in metastatic colorectal cancer (MCRC) patients treated with intensive triplet chemotherapy plus bevacizumab (FIr-B/FOx) according to extension of metastatic disease. J Med Chem 360:563–572Google Scholar
  162. Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJM, Schrama JG, Erdkamp FLG, Vos AH, van Groeningen CJ, Sinnige HAM, Richel DJ, Voest EE, Dijkstra JR, Vink-Borger ME, Antonini NF, Mol L, van Krieken JHJM, Dalesio O, Punt CJA, Engl N (2009b) Live cell integrated surface plasmon resonance biosensing approach to mimic the regulation of angiogenic switch upon anti-cancer drug exposure. J Med Chem 360:563–572Google Scholar
  163. Torchilin V (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71(3):431–444CrossRefGoogle Scholar
  164. Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3CrossRefGoogle Scholar
  165. Torshina NR, Jin Z, Diane Z, Heck E (2010) Catalytic therapy of cancer with ascorbate and extracts of medicinal herbs. eCAM7(2):203–212Google Scholar
  166. Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA (2008) Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 5(2):155–174CrossRefGoogle Scholar
  167. Tummala S, Kuppusamy G, Satish Kumar MN, Praveen TK, Wadhwani A (2015) 5-Fluorouracil enteric-coated nanoparticles for improved apoptotic activity and therapeutic index in treating colorectal cancer. Drug Deliv 23(8):1–9Google Scholar
  168. Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT, Yang YY (2011) Personalized medicine with a nanochemistry twist: nanomedicine. Adv Drug Deliv Rev 63:1228–1246CrossRefGoogle Scholar
  169. Verma RK, Mishra B, Garg S (2000) Osmotically controlled oral drug delivery. Drug Dev Ind Pharm 26:695–708CrossRefGoogle Scholar
  170. Prashansa A (2014) significance of Polymers in Drug Delivery System. J Pharmacovigil 3:1Google Scholar
  171. Wang Y, Kim YM, Langer R (2003) In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res A 66(1):192–197CrossRefGoogle Scholar
  172. Wang YJ, Yang CR, Chen XF, Zhao NR (2006) Development and characterization of novel biomimetic composite scaffolds based on bioglass-collagen-hyaluronic acid-phosphatidylserine for tissue engineering applications. Macromol Mater Eng 291(3):254–262CrossRefGoogle Scholar
  173. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D (2011) Biocompatibility of graphene oxide. Nanoscale Res Lett 6(1):8Google Scholar
  174. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198CrossRefGoogle Scholar
  175. Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HK (2014) Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2:14017CrossRefGoogle Scholar
  176. Wei Z, Ji-Shi W, Peng Z, Jie C, Ji-Lie K, Lian-Hua S, Huan-Ming X, Helmuth M (2017) Self-assembled ZnO nanoparticle capsules for carrying and delivering isotretinoin to cancer cells. ACS Appl Mater Interfaces 9:18474–18481CrossRefGoogle Scholar
  177. Weissman I, Spangrude G, Heimfeld S, Smith L, Uchida N (1991) Stem-cells. Nature 353(6339):26–26CrossRefGoogle Scholar
  178. Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161:264–273CrossRefGoogle Scholar
  179. Wu X, Wang Z, Zhu D, Zong S, Yang L, Zhong Y, Cui Y (2013) pH and thermo dual-stimuli-responsive drug carrier based on mesoporous silica nanoparticles encapsulated in a copolymer − lipid bilayer. ACS Appl Mater Interfaces 5(21):10895–10903CrossRefGoogle Scholar
  180. Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, Jung Y, Merlin D (2015a) Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 48:147–160CrossRefGoogle Scholar
  181. Xiao Y, Wang T, Cao Y, Wang X, Zhang Y, Liu Y, Huo Q (2015b) Correction: Enzyme and voltage stimuli-responsive controlled release system based on β-cyclodextrin-capped mesoporous silica nanoparticles. Dalton Trans 44(9):4355–4361CrossRefGoogle Scholar
  182. Yoo S, Hong S, Choi Y, Park JH, Nam Y (2014) Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 8(8):8040–8049CrossRefGoogle Scholar
  183. You X, Kang Y, Hollett G, Chen X, Zhao W, Gu Z, Wu J (2016) Polymeric nanoparticles for colon cancer therapy: overview and perspectives. J Mater Chem B 4:7779–7792CrossRefGoogle Scholar
  184. Yuan Y, Jin X, Fan Z, Li S, Lu Z (2015) In vivo degradation of copolymers prepared from L-lactide, 1,3-trimethylene carbonate and glycolide as coronary stent materials. J Mater Sci Mater Med 26(3):139CrossRefGoogle Scholar
  185. Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C (1999) Preparation and characterization of protein C-loaded PLA nanoparticles. J Control Release 60(2–3):179–188CrossRefGoogle Scholar
  186. Zhang Y, Nayak TR, Hong H, Cai W (2012) Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 4:3833–3842CrossRefGoogle Scholar
  187. Zhao P, Liu H, Deng H, Xiao L, Qin C, Du Y, Shi X (2014) A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Biointerfaces 123:657–663CrossRefGoogle Scholar
  188. Zhu CL, Wang XW, Lin ZZ, Xie ZH, Wang XR (2014) Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles. J Food Drug Anal 22(1):18–28CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mariappan Rajan
    • 1
    Email author
  • Rajendran Amarnath Praphakar
    • 1
  • Periyakaruppan Pradeepkumar
    • 1
  1. 1.Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of ChemistryMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations