Advertisement

Biomedical Applications of Electrospun Polymer Composite Nanofibres

  • Kalim DeshmukhEmail author
  • Sowmya Sankaran
  • M. Basheer Ahamed
  • S. K. Khadheer Pasha
Chapter
Part of the Lecture Notes in Bioengineering book series (LNBE)

Abstract

Electrospun polymeric nanofibers (PNFs) play a pivotal role in every facet of science, engineering, and technology. Electrospinning (ES) is the technique that endows non-woven fibers in the nanometer scales and that owns superior properties including high surface areas, mechanical strength, easy processability, mass production, and ease of functionalization. This technique has a great versatility to be altered in different ways for synergizing material properties with different morphology, in order to fulfill the requirement of desired applications. In general, the precursor materials used for producing electrospun nanofibers (NFs) are natural and synthetic polymers, ceramics, or composites. These precursors are carefully selected based on the nature and the structure of desired tissues regeneration. The application of electrospun PNFs in the biomedical field is very vital. It is a well-known fact that all the tissues and organs such as bone, tendons, cartilage, skin, and dentine of living beings comprise fibrous structures in the nanometer range. This chapter attempts to make an overview of the recent advances in electrospun polymeric composite NFs for biomedical applications.

Keywords

Electrospun nanofibers Drug delivery Tissue engineering Wound dressing 

References

  1. Agarwal P, Pramanik K (2016) Chitosan-poly(vinyl alcohol) nanofibers by free surface electrospinning for tissue engineering applications. Tissue Eng Regenerative Med 13(5):485–497Google Scholar
  2. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621Google Scholar
  3. Aghdam RM, Najarian S, Shakhesi S, Khanlari S, Shaabani K, Sharifi S (2012) Investigating the effect of PGA on physical and mechanical properties of electrospun PCL/PGA blend nanofibers. J Appl Polym Sci 124(1):123–131Google Scholar
  4. Ajalloueian F, Tavanai H, Hilborn J, Donzel-Gargand O, Leifer K, Wickham A, Arpanaei A (2014) Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Res Int 2014(Article ID: 475280)Google Scholar
  5. Alhosseini SN, Moztarzadeh F, Mozafari M, Asgari S, Dodel M, Samadikuchaksaraei A, Kargozar S, Jalali N (2012) Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomed 7:25–34Google Scholar
  6. Ansary RH, Awang MB, Rahman MM (2014) Biodegradable poly (d,l-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs-a review. Trop J Pharm Res 13(7):1179–1190Google Scholar
  7. Asran AS, Razghandi K, Aggarwal N, Michler GH, Groth T (2010) Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromolecules 11(12):3413–3421Google Scholar
  8. Athanasiou KA, Schmitz JP, Agrawal CM (2007) The effects of porosity on in vitro degradation of polylactic acid–polyglycolic acid implants used in repair of articular cartilage. Tissue Eng 4(1):53–63Google Scholar
  9. Aznar-Cervantes S, Roca MI, Martinez JG, Meseguer-Olmo L, Cenis JL, Moraleda JM, Otero TF (2012) Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85:36–43Google Scholar
  10. Bai MY, Liu SZ (2014) A simple and general method for preparing antibody-PEG-PLGA sub-micron particles using electrospray technique: an in vitro study of targeted delivery of cisplatin to ovarian cancer cells. Colloids Surf B 117:346–353Google Scholar
  11. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457Google Scholar
  12. Baker DW, Zhou J, Tsai YT, Patty KM, Weng H, Tang EN, Nair A, Hu WJ, Tang L (2014) Development of optical probes for in vivo imaging of polarized macrophages during foreign body reactions. Acta Biomateralia 10(7):2945–2955Google Scholar
  13. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomateralia 10(6):2341–2353Google Scholar
  14. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433Google Scholar
  15. Blomqvist J, Mannfors B, Pietila LO (2002) Amorphous cell studies of Polyglycolic, Poly(l-lactic), Poly(l,d-lactic) and Poly(glycolic/l-lactic) acids. Polymer 43(17):4571–4583Google Scholar
  16. Boakye MAD, Rija NP, Adhikari U, Bhattarai N (2015) Fabrication and characterization of electrospun PCL-MgO-Keratin-based composite nanofibers for biomedical applications. Materials 8(7):4080–4095Google Scholar
  17. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923Google Scholar
  18. Borriello A, Guarino V, Schiavo L, Alvarez-Perez MA, Ambrosio L (2011) Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J Mater Sci: Mater Med 22(4):1053–1062Google Scholar
  19. Brissault B, Kichler A, Guis C, Leborgne C, Danos O, Cheradame H (2003) Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem 14(3):581–587Google Scholar
  20. Chang HC, Sun T, Sultana N, Lim MM, Khan TH, Ismail AF (2016) Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: fabrication and characterization. Mater Sci Eng C 61:396–410Google Scholar
  21. Chellamani KP, Sundaramoorthy P, Suresham T (2012) Wound dressing made out of poly vinyl alcohol/chitosan nanomembranes. J Acad Ind Res 1(6):342–347Google Scholar
  22. Chellamani KP, Balaji RSV, Veerasubramanian D (2014) Development of wound dressing made of electro spun tetracycline hydrochloride drug incorporated PCL (Poly(Ε-Caprolactone)) nanomembrane. Int J Emerging Technol Adv Eng 4(4):251–256Google Scholar
  23. Chen C, Lv G, Pan C, Song M, Wu C, Guo D, Wang X, Chen B, Gu Z (2007) Poly(lactic acid) (PLA) based nanocomposites—a novel way of drug-releasing. Biomed Mater 2(4):1–4Google Scholar
  24. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A 313–314:183–188Google Scholar
  25. Chong C, Wang Y, Maitz PKM, Simanainen U, Li Z (2013) Electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing. Burns Trauma 1(2):95–101Google Scholar
  26. Choong C, Triffitt JT, Cui ZF (2004) Polycaprolactone scaffolds for bone tissue engineering: effects of a calcium phosphate coating layer on osteogenic cells. Food Bioprod Process 82(2):117–125Google Scholar
  27. Cohn D, Stern T, Gonzalez MF, Epstein J (2002) Biodegradable poly(ethylene oxide)/poly(epsilon-caprolactone) multiblock copolymers. J Biomed Mater Res 59(2):273–281Google Scholar
  28. Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ, LaDu BN, Pariza MW (1995) Safety assessment of polylactide (PLA) for use as a food contact polymer. Food Chem Toxicol 33(4):273–283Google Scholar
  29. Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2004) Controllable modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or amunolysis I: physical, chemical, and theoretical aspects. Biomacromolecules 5(2):463–473Google Scholar
  30. Danhier F, Ansorena E, Silva JM, Coco R, Breton AL, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release 161(2):505–522Google Scholar
  31. Delebecq E, Pascault JP, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate and non-isocyanate polyurethane. Chem Rev 113(1):80–118Google Scholar
  32. Deshmukh K, Ahamed MB, Pasha SKK, Deshmukh RR, Bhagat PR (2015) Highly dispersible graphene oxide reinforced polypyrole/polyvinyl alcohol blend nanocomposites with high dielectric constant and low dielectric loss. RSC Adv 5:61933–61945Google Scholar
  33. Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Chidambaram K, Sadasivuni KK, Ponnamma D, AlMaadeed MAA (2016a) Eco-friendly synthesis of graphene oxide reinforced hydroxypropyl methyl cellulose/polyvinyl alcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. Polym-Plast Technol Eng 55(12):1240–1253Google Scholar
  34. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Pasha SKK, AlMaadeed MAA, Chidambaram K (2016b) Graphene oxide reinforced polyvinyl alcohol blend composites as high performance dielectric materials. J Polym Res 23:159Google Scholar
  35. Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Ponnamma D, Chidambaram K (2016c) Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage applications. Eur Polym J 76:14–27Google Scholar
  36. Deshmukh K, Ahamed MB, Deshmukh RR, Bhagat PR, Pasha SKK, Bhagat A, Shirbhate R, Telare F, Lakhani C (2016d) Influence of K2CrO4 doping on the structural, optical and dielectric properties of polyvinyl alcohol/K2CrO4 composite films. Polym-Plast Technol Eng 55(3):231–241Google Scholar
  37. Deshmukh K, Ahamed MB, Deshmukh RR, Sadasivuni KK, Ponnamma D, Pasha SKK, AlMaadeed MAA, Polu AR, Chidambaram K (2017a) Eeonomer 200F®: A high performance nanofiller for polymer reinforcement-Investigation of the structure, morphology and dielectric properties of polyvinyl alcohol/Eeonomer 200F® nanocomposites for embedded capacitor applications. J Electron Mater 46(4):2406–2418Google Scholar
  38. Deshmukh K, Ahamed MB, Sadasivuni K, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SKK, Polu AR, Chidambaram K (2017b) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134(5):44427Google Scholar
  39. Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Ponnamma D, AlMaadeed MAA (2017c) Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers. J Mater Sci: Mater Electron 28(1):559–575Google Scholar
  40. Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Polu AR, Ponnamma D, AlMaadeed MAA, Chidambaram K (2017d) Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J Mater Sci: Mater Electron 28(1):973–986Google Scholar
  41. Duan YY, Jia J, Wang SH, Yan W, Jin L, Wang ZY (2007) Preparation of antimicrobial poly(ε-caprolactone) electrospun NFs containing silver loaded zirconium phosphate nanoparticles. J Appl Polym Sci 106(2):1208–1214Google Scholar
  42. El-Aassar MR, El-Fawal GF, El-Deeb NM, Hassan SH, Mo X (2016) Electrospun polyvinyl alcohol/pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing. Appl Biochem Biotechnol 178(8):1488–1502Google Scholar
  43. Fan ZY, Zhao YL, Zhu XY, Luo Y, Shen MW, Shi XY (2016) Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications. Chin J Polym Sci 3(6):755–765Google Scholar
  44. Fernandes JG, Correia DM, Botelho G, Padrao J, Dourado F, Ribeiro C, Lanceros-Mendez S, Sencadas V (2014) PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. Polym Testing 34:64–71Google Scholar
  45. French AC, Thompson AL, Davis BG (2009) High purity discrete PEG oligomer crystals allow structural insight. Angew Chem Int Ed 48(7):1248–1252Google Scholar
  46. Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26(19):4139–4147Google Scholar
  47. Gallant-Behm CL, Yin HQ, Jui S, Heggers JP, Langford RE, Olson ME, Hart DA, Burrell RE (2005) Comparison of in vitro disc diffusion and time kill-kinetic assays for the evaluation of antimicrobial wound dressing efficacy. Wound Repair Regeneration 13(4):412–421Google Scholar
  48. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84Google Scholar
  49. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659Google Scholar
  50. Gholipour AK, Bahrami SH, Nouri M (2009) Chitosan-poly(vinyl alcohol) blend nanofibers: Morphology, biological and antimicrobial properties. E-Polym 9(1):1–12Google Scholar
  51. Ghosal K, Thomas S, Kalarikkal N, Gnanamani A (2014) Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: preliminary physico-chemical studies for skin substitute. J Polym Res 21(410):1–5Google Scholar
  52. Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly(lactic acid) homo- and copolymers. Polymer 20(12):1459–1464Google Scholar
  53. Gizdavic-Nikolaidis M, Ray S, Bennett JR, Easteal AJ, Cooney RP (2010) Electrospun functionalized polyaniline copolymer-based nanofibers with potential application in tissue engineering. Macromol Biosci 10(12):1424–1431Google Scholar
  54. Goncalves RP, da Silva FFF, Picciani PHS, Dias ML (2015) Morphology and thermal properties of core-shell PVA/PLA ultrafine fibers produced by coaxial electrospinning. Mater Sci Appl 6(2):189–199Google Scholar
  55. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703Google Scholar
  56. Groenendaal LB, Jonas F, Freitag H, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481–494Google Scholar
  57. Hajiali H, Shahgasempour S, Naimi-Jamal MR, Peirovi H (2011) Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering. Int J Nanomed 6:2133–2141Google Scholar
  58. Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Properties and medical applications of polylactic acid: A review. Express Polym Lett 9(5):435–455Google Scholar
  59. Hardiansyah A, Tanadi H, Yang MC, Liu TY (2015) Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers. J Polym Res 22(59):1–10Google Scholar
  60. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65Google Scholar
  61. Hassiba AJ, Zowalaty ME, Nasrallah GK, Webster TJ, Luyt AS, Abdullah AM, Elzatahry AA (2016) Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine 11(6):715–737Google Scholar
  62. Heo SY, Seo JW, Kim NS (2014) Characterisation and assessment of electrospun poly/hydroxyapatite nanofibres together with a cell adhesive for bone repair applications. Vet Med 59(10):498–501Google Scholar
  63. Hiep NT, Lee BT (2010) Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci: Mater Med 21(6):1969–1978Google Scholar
  64. Hirashi N, Yau JY, Loushine RJ, Armstrong SR, Weller RN, King NM, Pashley DH, Tay FR (2007) Susceptibility of a polycaprolactone-based root canal-filling material to degradation. III. Turbidimetric evaluation of enzymatic hydrolysis. J Endod 33(8):952–956Google Scholar
  65. Hoveizi E, Nabiuni M, Parivar K, Zeleti SR, Tavakol S (2014) Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol Int 38(1):41–49Google Scholar
  66. Huang ZM, He CL, Yang A, Zhang Y, Han XJ, Yin J, Wu Q (2006a) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res Part A 77(1):169–179Google Scholar
  67. Huang LM, Chen CH, Wen TC (2006b) Development and characterization of flexible electrochromic devices based on polyaniline and poly(3,4-ethylenedioxythiophene) poly(styrene sulfonic acid). Electrochim Acta 51(26):5858–5863Google Scholar
  68. Huang ZB, Yin GF, Liao XM, Wen J (2014) Conducting polypyrrole in tissue engineering applications. Front Mater Sci 8(1):39–45Google Scholar
  69. Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I (2006) Electrospunnano-fibre mats with antibacterial properties from quaternized chitosan and poly(vinyl alcohol). Carbohydr Res 341(12):2098–2107Google Scholar
  70. Immich APS, Arias ML, Carreras N, Boemo RL, Tornero JA (2013) Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Mater Sci Eng C 33(7):4002–4008Google Scholar
  71. Jayakumar R, Nair SV, Furuike T, Tamura H (2010) Perspectives of chitin and chitosan nanofibrous scaffolds in tissue engineering. In: Eberli D (ed) tissue engineering. InTech, Rijeka.  https://doi.org/10.5772/8593CrossRefGoogle Scholar
  72. Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, Tamura H (2011) Chitin scaffolds in tissue engineering. Int J Mol Sci 12(3):1876–1887Google Scholar
  73. Jesus VGL, Cornejo-Bravo JM, Vera-Graziano R, Grande D (2016) Electrospinning as a powerful technique for biomedical applications: a critically selected survey. J Biomater Sci Polym Ed 27(2):157–176Google Scholar
  74. Jin L, Wang T, Feng ZQ, Leach MK, Wu J, Mo S, Jiang Q (2013) A facile approach for the fabrication of core-shell PEDOT nanofiber mats with superior mechanical properties and biocompatibility. J Mater Chem B 1(13):1818–1825Google Scholar
  75. Jones SA, Bowler PG, Walker M, Parsons D (2004) Controlling wound bioburden with a novel silver containing hydrofiber dressing. Wound Repair Regeneration 12(3):288–294Google Scholar
  76. Kaihara S, Matsumura S, Mikos AG, Fisher JP (2007) Synthesis of poly(l-lactide) and polyglycolide by ring-opening polymerization. Nat Protoc 2(11):2767–2771Google Scholar
  77. Kanani AG, Bahrami SH (2010) Review on electrospun nanofibers scaffold and biomedical applications. Trends Biomater Artif Organs 24(2):93–115Google Scholar
  78. Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan-coated poly(vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B Appl Biomater 92(2):568–576Google Scholar
  79. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5:37553–37567Google Scholar
  80. Kenawy ER, Abdel-Hay FI, El-Newehy MH, Wnek GE (2007) Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Mater Sci Eng A 459(1–2):390–396Google Scholar
  81. Khalil KA, Fouad H, Elsarnagawy T, Almajhdi FN (2013) Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci 8:3483–3493Google Scholar
  82. Khanam N, Mikoryak C, Draper RK, Balkus KJ Jr (2007) Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomateralia 3(6):1050–1059Google Scholar
  83. Khoo RZ, Ismail H, Chow WS (2016) Thermal and morphological properties of poly(lactic acid)/nanocellulose nanocomposites. Procedia Chem 19:788–794Google Scholar
  84. Kim K, Yu M, Zong X, Chiu J, Fang D, Seo YS, Hsiao BS, Chu B, Dadjiargyrou M (2003) Control of degradation rate and hydrophilicity in electrospun non-woven poly (d,l-lactide) nanofiber scaffolds for biomedical applications. Biomaterials 24(27):4497–4585Google Scholar
  85. Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of hydrophilic antibiotic using Poly(lactide-co-glycolide)—based electrospun nanofibrous scaffolds. J Controlled Release 98(1):47–56Google Scholar
  86. Kim SE, Heo DN, Lee JB, Kim JR, Park SH, Jeon SH, Kwon IK (2009a) Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater 4(4):044106Google Scholar
  87. Kim JH, Choung PH, Kim IY, Lim KT, Son HM, Choung YH, Cho CS, Chung JH (2009b) Electrospun nanofibers composed of poly(ε-caprolactone) and polyethylenimine for tissue engineering applications. Mater Sci Eng C 29(5):1725–1731Google Scholar
  88. Kim JI, Pant HR, Sim HJ, Lee KM, Kim CS (2014) Electrospun propolis/polyurethane composite nanofibers for biomedical applications. Mater Sci Eng C 44(1):52–57Google Scholar
  89. Kovar J, Wang Y, Simpson MA, Olive DM (2009) Imaging lymphatics with a variety of near-infrared-labeled optical agents. In: World molecular imaging conference, pp 67–68Google Scholar
  90. Kowalski A, Duda A, Penczek S (2000) Mechanism of cyclic ester polymerization initiated with tin(II) octoate. 2. Macromolecules fitted with tin (II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33(3):689–695Google Scholar
  91. Lasprilla AJR, Martinez GAR, Lunelli BM, Jardini AL, Fiho RM (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30(1):321–328Google Scholar
  92. Law JX, Liau LL, Saim A, Yang Y, Idrus R (2017) Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng Regenerative Med 14(6):1–20Google Scholar
  93. Leaper DJ (2006) Silver dressings: their role in wound management. Int Wound J 3(4):282–294Google Scholar
  94. Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ (2008) Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29(19):2891–2898Google Scholar
  95. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335Google Scholar
  96. Lee EJ, Lee JH, Shin YC, Hwang DG, Kim JS, Jin OS, Jin L, Hong SW, Han DW (2014) Graphene oxide-decorated PLGA/collagen hybrid fiber sheets for application to tissue engineering scaffolds. Biomater Res 18(1):18–24Google Scholar
  97. Leung V, Ko F (2011) Biomedical applications of nanofibers. Polym Adv Technol 22(3):350–365Google Scholar
  98. Li S, Garreau H, Pauvert B, McGrath J, Toniolo A, Vert M (2002) Enzymatic degradation of block copolymers prepared from epsilon-caprolactone and poly(ethylene glycol). Biomacromolecules 3(3):525–530Google Scholar
  99. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkesa Peter I (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27(13):2705–2715Google Scholar
  100. Li J, Stayshich RM, Meyer TY (2011) Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers. J Am Chem Soc 133(18):6910–6913Google Scholar
  101. Liao IC, Chew SY, Leong KW (2006) Aligned core-shell nanofibers delivering bioactive proteins. Nanomedicine 1(4):465–471Google Scholar
  102. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852Google Scholar
  103. Liu XF, Liu XB (2015) Polyethyleneimine as targeted gene vectors: a review. J Int Pharm Res 42(4):478–482Google Scholar
  104. Liu M, Duan XP, Li YM, Yang DP, Long YZ (2017) Electrospun nanofibers for wound healing. Mater Sci Eng C 76:1413–1423Google Scholar
  105. Llorens E, Armelin E, Pérez-Madrigal MDM, Valle LJD, Aleman C, Puiggalí J (2013) Nanomembranes and nanofibers from biodegradable conducting polymers. Polymers 5(3):1115–1157Google Scholar
  106. Louis CS (2012). Drug for adults is popular as children’s remedy. The New York TimesGoogle Scholar
  107. MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40(14):2581–2590Google Scholar
  108. Makadia HK, Siegel SJ (2011) Polylactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397Google Scholar
  109. Manea LR, Hristian L, Leon AL, Popa A (2016) Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications. IOP Conf Ser: Mater Sci Eng 145(3):032006Google Scholar
  110. Marin E, Rojas J, Ciro Y (2014) A review of polyvinyl alcohol derivatives: promising materials for pharmaceutical and biomedical applications. Afr J Pharm Pharmacol 8(24):674–684Google Scholar
  111. Marten FL (2002) vinyl alcohol polymers. Encycl Polym Sci Technol 8:399–437Google Scholar
  112. Matuseviciute A, Butkiene A, Stanys S, Adomaviciute E (2012) Formation of PVA nanofibres with iodine by electrospinning. Fibres Textiles Eastern Eur 20(3):21–25Google Scholar
  113. McKeon KD, Lewis A, Freeman JW (2010) Electrospun poly (d,l-Lactide) and polyaniline scaffold characterization. J Appl Polym Sci 115(3):1566–1572Google Scholar
  114. McKeon-Fischer KD, Browe DP, Olabisi RM, Freeman JW (2015) Poly(3,4-ethylenedioxythiophene) nanoparticle and poly(ɛ-caprolactone) electrospun scaffold characterization for skeletal muscle regeneration. J Biomed Mater Res Part A 103(11):3633–3641Google Scholar
  115. Menaa B (2011) The importance of nanotechnology in biomedical sciences. J Biotechnol Biomater 1(5):105eGoogle Scholar
  116. Meng J, Xiao B, Zhang Y, Liu J, Xue HD, Lei J, Kong H, Huang YG, Jin ZY, Gu N, Xu H (2013) Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep 3:2655Google Scholar
  117. Middleton J, Tipton A (2006) Synthetic biodegradable polymers as medical devices. Med Plast Biomater MagGoogle Scholar
  118. Mirakabad FST, Nejati-Koshki K, Akbarzadeh A, Yamchi MR, Milani M, Zarghami N, Zeighamian V, Rahimzadeh A, Alimohammadi S, Hanifehpour Y, Joo SW (2014) PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev 15(2):517–535Google Scholar
  119. Mirzaei E, Faridi-Majidi R, Shokrgozar MA, Paskiabi FA (2014) Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold. Nanomed J 1(3):137–146Google Scholar
  120. Mohamed RM, Yusoh K (2016) A review on the recent research of polycaprolactone (PCL). Adv Mater Res 1134:249–255Google Scholar
  121. Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2016a) Zeolite 4A filled poly(3,4-ethylenedioxythiophene): (polystyrenesulfonate) and polyvinyl alcohol blend nanocomposites as high-k dielectric materials for embedded capacitor applications. Adv Mater Lett 7(12):996–1002Google Scholar
  122. Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2016b) Influence of cerium oxide (CeO2) nanoparticles on the structural, morphological, mechanical and dielectric properties of PVA/PPy blend nanocomposites. Mater Today: Proc 3(6):1864–1873Google Scholar
  123. Mohanapriya MK, Deshmukh K, Chidambaram K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SKK (2017) Polyvinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposites for flexible energy storage device applications. J Mater Sci: Mater Electron 28:6099–6111Google Scholar
  124. Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha I (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7(12):11859–11875Google Scholar
  125. Moreno I, Gonzalez-Gonzalez V, Romero-Garcia J (2011) Control release of lactate dehydrogenase encapsulated in poly(vinyl alcohol) nanofibers via electrospinning. Eur Polym J 47:1264–1272Google Scholar
  126. Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2(3):1–5Google Scholar
  127. Nagaraj A, Govindaraj D, Rajan M (2018) Magnesium oxide entrapped polypyrole hybrid nanocomposites as an efficient selective scavenger for fluoride ion in drinking water. Emergent Mater 1(1–2):1–9Google Scholar
  128. Ni P, Fu S, Fan M, Guo G, Shi S, Peng J, Luo F, Qian Z (2011) Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering. Int J Nanomed 6:3065–3075Google Scholar
  129. Park JY, Lee IH (2011) Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers. J Polym Res 18(6):1287–1291Google Scholar
  130. Park KE, Kang HK, Lee SJ, Min BM, Park WH (2006) Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules 7(2):635–643Google Scholar
  131. Pavot V, Berthet M, Resseguier J, Legaz S, Handke N, Gilbert SC, Paul S, Verrier B (2014) Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine 9(17):2703–2718Google Scholar
  132. Pawde SM, Deshmukh K (2008) Characterization of polyvinylalcohol/gelatin blend hydrogel films for biomedical applications. J Appl Polym Sci 109(5):3431–3437Google Scholar
  133. Pawde SM, Deshmukh K, Parab S (2008) Preparation and characterization of polyvinylalcohol and gelatin blend films. J Appl Polym Sci 109(2):1328–1337Google Scholar
  134. Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterilia 5(8):2884–2893Google Scholar
  135. Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S (2011) Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 112(5):501–507Google Scholar
  136. Pyshkina O, Kubarkov A, Sergeyev V (2010) Poly(3,4-ethylenedioxythiophene): synthesis and properties. Mater Sci Appl Chem 21:51–54Google Scholar
  137. Repanas A, Wolkers WF, Gryshkov O, Müller M, Glasmacher B (2015) PCL/PEG electrospun fibers as drug carriers for the controlled delivery of dipyridamole. J In Silico In Vitro Pharmacol 1(2):1–10Google Scholar
  138. Rieger KA, Birch NP, Schiffman JD (2013) Designing electrospun nanofiber mats to promote wound healing—a review. J Mater Chem B 1(36):4531–4541Google Scholar
  139. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54(4):459–476Google Scholar
  140. Rujiravanit R, Kruaukitanan S, Jamieson AM, Tokura S (2003) Preparation of crosslinked chitosan/silk fibroin blend films for drug delivery systems. Macromol Biosci 3:604–611Google Scholar
  141. Saha K, Butola BS, Joshi M (2014) Drug-loaded polyurethane/clay nanocomposite nanofibers for topical drug-delivery application. J Appl Polym Sci 131(10):40230Google Scholar
  142. Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG (2010) Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Controlled Release 143(1):95–103Google Scholar
  143. Sasipriya K, Suriyaprabha R, Prabu P, Rajendran V (2013) Synthesis and characterisation of polymeric nanofibers poly(vinyl alcohol) and poly(vinyl alcohol)/silica using indigenous electrospinning set up. Mater Res 16(4):824–830Google Scholar
  144. Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohyd Polym 77(4):863–869Google Scholar
  145. Sharma AK, Sharna Y, Duhan S (2015) Biocompatible smart matrices based on poly(3,4-ethylenedioxythiophene)-poly(n-isopropylacrylamide) composite. Int J Polym Mater Polym Biomater 64(7):333–337Google Scholar
  146. Sill TJ, Recum HAV (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006Google Scholar
  147. Smolinske SC (1992) Handbook of food, drug and cosmetic excipients. CRC Press, Boca Raton, p 287. ISBN 0-8493-3585-XGoogle Scholar
  148. Song B, Wua C, Chang J (2012) Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomaterilia 8(5):1901–1907Google Scholar
  149. Spasova M, Stoilova O, Manolova N, Rashkov I, Altankov G (2007) Preparation of PLLA/PEG nanofibers by electrospinning and potential applications. J Bioact Compatible Polym 22(1):62–76Google Scholar
  150. Spasova M, Paneva D, Manolova N, Radenkov P, Rashkov I (2008) Electrospun chitosan-coated fibers of poly(l-lactide) and poly(l-lactide)/poly(ethylene glycol): preparation and characterization. Macromol Biosci 8(2):153–162Google Scholar
  151. Stevanoviae M, Saviae J, Jordoviae B, Uskokoviae D (2007) Fabrication, in vitro degradation and the release behaviours of poly(dl-lactide-co-glycolide) nanospheres containing ascorbic acid. Colloids Surf B Bioniterfaces 59(2):215–223Google Scholar
  152. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138Google Scholar
  153. Sun B, Duan B, Yuan X (2006) Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning. J Appl Polym Sci 102(1):39–45Google Scholar
  154. Suwilai T, Ng JJ, Boonkrai C, Israsena N, Chuangchote S, Supaphol P (2014) Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth. J Biomater Sci: Polym Ed 25(12):1240–1252Google Scholar
  155. Taepaiboon P, Rungsardthong U, Supaphol P (2006) Drug loaded electrospun mats of Poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17(9):2317–2329Google Scholar
  156. Takahashi K, Taniguchi I, Miyamoto M, Kimura Y (2000) Melt/solid polycondensation of glycolic acid to obtain high molecular weight poly(glycolic acid). Polymer 41(24):8725–8728Google Scholar
  157. Takenaka S, Ishida M, Serizawa M, Tanabe E, Otsuka K (2004) Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts. J Phys Chem B 108(31):11464–11472Google Scholar
  158. Talebian S, Mehrali M, Mohan S, Raghavendran HRB, Mehrali M, Kamarul K, Afifi AM, Abass AA (2014) Chitosan (PEO)/bioactive glass hybrid nanofibers for bone tissue engineering. RSC Adv 4:49144–49152Google Scholar
  159. Thangamani GJ, Deshmukh K, Sadasivuni KK, Chidambaram K, Ahamed MB, Ponnamma D, AlMaadeed MAA, Pasha SKK (2017) Recent advances in electrochemical biosensors and gas sensors based on graphene and carbon nanotubes (CNT): a review. Adv Mat Lett 8(3):196–205Google Scholar
  160. Tiwari A, Sharma Y, Hattori S, Terada D, Sharma AK, Turner APF, Kobayashi H (2013) Influence of poly(N-isopropylacrylamide)-CNT-polyaniline three dimensional electrospun microfabric scaffolds on cell growth and viability. Biopolymers 99(5):334–341Google Scholar
  161. Unnithan AR, Barakat NAM, Pichiah PBT, Gnanasekaran G, Nirmala R, Cha YS, Jung CH, El-Newehy M, Kim HY (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohyd Polym 90(4):1786–1793Google Scholar
  162. Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohyd Polym 102(15):884–892Google Scholar
  163. Valente TA, Silva DM, Gomes PS, Fernandes MH, Santos JD, Sencades V (2016) Effect of sterilization methods on electrospun poly(lactic acid) (PLA) fiber alignment for biomedical applications. ACS Appl Mater Interfaces 8(5):3241–3249Google Scholar
  164. Vaz CM, Van Tuij S, Bouten CVC, Baaijens FPT (2005) Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomateralia 1(5):575–582Google Scholar
  165. Venugopal J, Zhang YZ, Ramakrishna S (2011) Electrospun nanofibres: biomedical applications. Proc Inst Mech Eng Part N: J Nanomater Nanoeng Nanosyst 218(1):35–45Google Scholar
  166. Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, Noppe M, Brewster ME (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, non-biodegradable polymer. J Controlled Release 92(3):349–360Google Scholar
  167. Vongsetskul T, Kongjumnean P, Sunintaboon P, Rangkupan R, Tangboriboonrat P (2012) Electrospun composite fibers of polyvinylpyrrolidone with embedded poly(methyl methacrylate)-polyethyleneimine core-shell particles. Polym Bull 69:1115–1123Google Scholar
  168. Wang LX, Li XG, Yang YL (2001) Preparation, properties and applications of polypyrroles. React Funct Polym 47(2):125–139Google Scholar
  169. Wang H, Feng Y, Zhao H, Xiao R, Lu J, Zhang L, Guo J (2012) Electrospun hemocompatible PU/gelatin-heparin nanofibrous bilayer scaffolds as potential artificial blood vessels. Macromol Res 20(4):347–350Google Scholar
  170. Wang J, Cui X, Zhou Y, Xiang Q (2014) Core-shell PLGA/collagen nanofibers loaded with recombinant FN/CDHs as bone tissue engineering scaffolds. Connect Tissue Res 55(4):292–298Google Scholar
  171. Wang Y, Li P, Xiang P, Lu J, Yuan J, Shen J (2016a) Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings. J Mater Chem B 4(4):635–648Google Scholar
  172. Wang H, Lin J, Shen ZX (2016b) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci: Adv Mater Dev 1(3):225–255MathSciNetGoogle Scholar
  173. Wei K, Li Y, Mugishima H, Teramoto A, Abe K (2012) Fabrication of core-sheath structured fibers for model drug release and tissue engineering by emulsion electrospinning. Biotechnol J 7(5):677–685Google Scholar
  174. Weng L, Xie J (2015) Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Curr Pharm Des 21(15):1944–1959Google Scholar
  175. Winger M, de Vries AH, Van Gunsteren WF (2009) Force-field dependence of the conformational properties of α, ω-dimethoxypolyethylene glycol. Mol Phys 107(13):1313–1321Google Scholar
  176. Wojasinski M, Bożyk J, Wasiak I, Ciach T (2014) Electrospun poly-l-lactic acid/nanohydroxyapatite nanofibrous composite as a potential bone tissue replacement material. Inzynieria I Aparatura Chemiczna 53(4):322–323Google Scholar
  177. Woo YI, Park BJ, Kim HL, Lee MH, Kim J, Yang YI, Kim JK, Tsubaki K, Han DW, Park JC (2010) The biological activities of (1,3)-(1,6)-β-d-glucan and porous electrospun PLGA membranes containing β-glucan in human dermal fibroblasts and adipose tissue-derived stem cells. Biomed Mater 5(4):1–8Google Scholar
  178. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-polycaprolactone in 21st century. Prog Polym Sci 35(10):1217–1256Google Scholar
  179. Wright JB, Lam K, Buret AG, Olson ME, Burrell RE (2002) Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regeneration 10(3):141–151Google Scholar
  180. Wu HB, Bremmer DH, Nie HL, Quan J, Zhu IM (2015) Electrospun polyvinyl alcohol/carbon dioxide modified polyethyleneimine composite nanofiber scaffolds. J Biomater Appl 29(10):1407–1417Google Scholar
  181. Xin X, Hussain M, Mao JJ (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28(2):316–325Google Scholar
  182. Xu XL, Yang LX, Xu XY, Wang X, Chen XS, Liang QZ, Zeng J, Jing XB (2005) Ultrafine medicated fibers electrospun from W/O emulsions. J Controlled Release 108:33–42Google Scholar
  183. Xu X, Chen X, Xu X, Lu T, Wang X, Yang L, Jing X (2006) BCNU-loaded PEG/PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. J Controlled Release 114(3):307–316Google Scholar
  184. Xu X, Chen X, Ma P, Wang X, Jing X (2008) The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm 70(1):165–170Google Scholar
  185. Xu J, Zhang J, Gao W, Liang H, Wang H, Li J (2009a) Preparation of chitosan/PLA blend micro/nanofibers by electrospinning. Mater Lett 63(8):658–660Google Scholar
  186. Xu X, Chen X, Wang Z, Jing X (2009b) Ultrafine PEG-PlA fibers loaded with both paclitaxel and doxorubicin hydrochloric and their in vitro cytotoxicity. Eur J Pharm Biopharm 72(1):18–25Google Scholar
  187. Xu X, Zhong W, Zhou S, Trajtman A, Alfa M (2010) Electrospun PEG–PLA nanofibrous membrane for sustained release of hydrophilic antibiotics. J Appl Polym Sci 118(1):588–595Google Scholar
  188. Yang D, Li Y, Nie J (2007) Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohyd Polym 69(3):538–543Google Scholar
  189. Yang Y, Li X, Cui W, Zhou S, Tan R, Wang C (2008) Structural stability and release profiles of proteins from core-shell poly(dl-lactide) ultrafine fibers prepared by emulsion electrospinning. J Biomed Mater Res Part A 86(2):374–385Google Scholar
  190. Yemuland O, Imae T (2008) Synthesis and characterization of poly(ethyleneimine) dendrimers. Colloids Polym Sci 286(6–7):747–752Google Scholar
  191. Yeum JH, Park JH, Kim IK, Cheong IW (2011) Electrospinning fabrication and characterization of water soluble polymer/montmorillonite/silver nanocomposite nanofibers out of aqueous solution. In: Reddy B (ed) Advances in nanocomposites—synthesis, characterization and industrial applications. InTech, Rijeka.  https://doi.org/10.5772/14720CrossRefGoogle Scholar
  192. You Y, Lee SW, Youk JH, Min BM, Lee SJ, Park WH (2005) In vitro degradation behavior of non-porous ultra-fine poly(glycolic acid)/poly(l-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polym Degrad Stab 90(3):441–448Google Scholar
  193. Yu Y, Kong L, Li L, Li N, Yan P (2015) Antitumor activity of doxorubicin-loaded carbon nanotubes incorporated poly(lactic-co-glycolic acid) electrospun composite nanofibers. Nanoscale Res Lett 10:343Google Scholar
  194. Zhang Y, Huang ZM, Xu X, Lim CT, Ramakrishna S (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by co-axial electrospinning. Chem Mater 16(18):3406–3409Google Scholar
  195. Zhang YZ, Venugopal JR, Huang ZM, Lim CT, Ramakrishna S (2005a) Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6(5):2583–2589Google Scholar
  196. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005b) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72(1):156–165Google Scholar
  197. Zhang YZ, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S (2006) Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release. Biomacromolecules 7(4):1049–1057Google Scholar
  198. Zhou YS, Yang D, Chen X, Xu Q, Lu F, Nie J (2008) Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9(1):349–354Google Scholar
  199. Zintchenko A, Philipp A, Dehshahri A, Wagner E (2008) Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem 19(7):1448–1455Google Scholar
  200. Zulkifli FH, Shahitha F, Yusuff MM, Hamidon NN, Chaha SS (2013) Cross-linking effect on electrospun hydroxyethyl cellulose/poly(vinyl alcohol) nanofibrous scaffolds. Procedia Eng 53:689–695Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kalim Deshmukh
    • 1
    Email author
  • Sowmya Sankaran
    • 1
  • M. Basheer Ahamed
    • 1
  • S. K. Khadheer Pasha
    • 2
  1. 1.Department of PhysicsB. S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia
  2. 2.Department of PhysicsVIT-AP UniversityGunturIndia

Personalised recommendations