Advertisement

Shape Memory Polymer Composites in Biomedical Field

  • Aqib Muzaffar
  • Kalim Deshmukh
  • M. Basheer AhamedEmail author
  • S. K. Khadheer Pasha
Chapter
Part of the Lecture Notes in Bioengineering book series (LNBE)

Abstract

This chapter is anticipated to provide a brief insight into shape memory polymers (SMPs). The insight comprises of the designing aspects pertaining to SMP which include a description of mechanical properties, biocompatibility, hemocompatibility, genotoxicity, histocompatibility, biodegradability, and sterilizability. The biocompatibility comprising of cytotoxicity, mitochondrial activity, membrane damage, and cytokine production is described. The main discussion is intended toward the biomedical applications of shape memory polymer composites. In addition to that, electro-active shape memory polymer composites are mentioned along with SMPs containing fillers like Ni, electromagnetic fillers, and carbon nanotubes (CNTs). The impact on the addition of these fillers on the overall characteristics of the shape memory polymer composite is discussed. The potential of different polymer materials with their applicability in the biomedical field and their current research progress is also reviewed.

Keywords

Shape memory polymers Biocompatibility Biodegradability Biomedical applications 

References

  1. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22:1304–1309CrossRefGoogle Scholar
  2. Bamberg CE, Mackay CR, Lee H, Zahra D, Jackson J, Lim YS, Whitfeld PL, Craig S, Corsini E, Lu B, Gerard C (2010) The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. J Biol Chem 285:7633–7644CrossRefGoogle Scholar
  3. Benites CI, Amado LL, Vianna RAP, da Graça Martino-Roth M (2006) Micronucleus test on gas station attendants. Genet Mol Res 5:45–54Google Scholar
  4. Boncler M, Różalski M, Krajewska U, Podsędek A, Watala C (2014) Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells. J Pharmacol Toxicol Methods 6:9–16CrossRefGoogle Scholar
  5. Chadwick D, Everard C, McDonnell K (2012) optimising point source CO2 mitigation by microalgae using near-infrared spectroscopy. Biosyst Eng Res Rev 17:139Google Scholar
  6. Collins DA, Yakacki CM, Lightbody D, Patel RR, Frick CP (2016) Shape-memory behavior of high-strength amorphous thermoplastic poly (para-phenylene). J Appl Polym Sci 133:3CrossRefGoogle Scholar
  7. de Lima R, Fraceto LF (2014) Genetic studies on the effects of nanomaterials. Nanotoxicology. Springer, New York, pp 177–199CrossRefGoogle Scholar
  8. Duerig TW, Melton KN, Stöckel D (2013) Engineering aspects of shape memory alloys. Butterworth-HeinemannGoogle Scholar
  9. Focarete ML, Gualandi C (2016) Cell delivery for regenerative medicine by using bioresorbable. Bioresorbable Polym Biomed Appl: From Fundam Transl Med 365Google Scholar
  10. Gonzalo S, Rodea-Palomares I, Leganés F, García-Calvo E, Rosal R, Fernández-Piñas F (2015) First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: a linkage with toxicity and oxidative stress. Nanotoxicology 9:706–718Google Scholar
  11. Govindarajan T, Shandas R (2014) A survey of surface modification techniques for next-generation shape memory polymer stent devices. Polymers 6:2309–2331CrossRefGoogle Scholar
  12. Gunes IS, Jana SC (2008) Shape memory polymers and their nanocomposites: a review of science and technology of new multifunctional materials. J Nanosci Nanotechnol 8:1616–1637CrossRefGoogle Scholar
  13. He C, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Controlled Release 127:189–207CrossRefGoogle Scholar
  14. Hearon K, Gall K, Ware T, Maitland DJ, Bearinger JP Wilson TS (2011) Post‐polymerization crosslinked polyurethane shape memory polymers. J Appl Polym Sci 121:144–153Google Scholar
  15. Hearon K, Smith SE, Maher CA, Wilson TS, Maitland DJ (2013) The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers. Radiat Phys Chem 83:111–121CrossRefGoogle Scholar
  16. Hu J, Yang Z, Yeung L, Ji F, Liu Y (2005) Crosslinked polyurethanes with shape memory properties. Polym Int 54:854–859CrossRefGoogle Scholar
  17. Kausar A (2016) Physical properties and shape memory behavior of thermoplastic polyurethane/poly (ethylene-alt-maleic anhydride) blends and graphene nanoplatelet composite. Iran Polym J 25:945–955CrossRefGoogle Scholar
  18. Kavanagh K, Flynn DM, Nelson C, Zhang L, Wagner JD (2011) Characterization and validation of a streptozotocin-induced diabetes model in the vervet monkey. J Pharmacol Toxicol Methods 63:296–303CrossRefGoogle Scholar
  19. Khan MI, Pequegnat A, Zhou YN (2013) Multiple memory shape memory alloys. Adv Eng Mater 15:386–393Google Scholar
  20. Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20:3404–3415CrossRefGoogle Scholar
  21. Kuźma Ł, Wysokińska H, Różalski M, Krajewska U, Kisiel W (2012) An unusual taxodione derivative from hairy roots of Salvia austriaca. Fitoterapia 83:770–773CrossRefGoogle Scholar
  22. Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo (ɛ-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci 98:842–847Google Scholar
  23. Lendlein A, Behl M, Hiebl B, Wischke C (2010) Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices 7:357–379CrossRefGoogle Scholar
  24. Li J, Lewis CL, Chen DL, Anthamatten M (2011) Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers. Macromolecules 44:5336–5343CrossRefGoogle Scholar
  25. Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23:023001CrossRefGoogle Scholar
  26. Lu W, Le X, Zhang J, Huang Y, Chen T (2017) Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry. Chem Soc Rev 46(5):1284–1294CrossRefGoogle Scholar
  27. Lv H, Leng J, Liu Y, Du S (2008) Shape-memory polymer in response to solution. Adv Eng Mater 10:592–595CrossRefGoogle Scholar
  28. Lyu S, Untereker D (2009) Degradability of polymers for implantable biomedical devices. Int J Mol Sci 10:4033–4065CrossRefGoogle Scholar
  29. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40:1661–1672CrossRefGoogle Scholar
  30. Meng H, Li G (2013) Reversible switching transitions of stimuli-responsive shape changing polymers. J Mater Chem A 1:7838–7865CrossRefGoogle Scholar
  31. Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA (2006) Hemocompatibility evaluation of poly (glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials 27:4315–4324CrossRefGoogle Scholar
  32. Ortega JM, Small W, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2007) A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts. IEEE Trans Biomed Eng 54:1722–1724CrossRefGoogle Scholar
  33. Pan M, Yuan QJ, Gong XL, Zhang S, Li BJ (2016) A Tri-stimuli-responsive shape-memory material using host-guest interactions as molecular switches. Macromol Rapid Commun 37:433–438CrossRefGoogle Scholar
  34. Park H, Harrison P, Guo Z, Lee MG, Yu WR (2016) Three-dimensional constitutive model for shape memory polymers using multiplicative decomposition of the deformation gradient and shape memory strains. Mech Mater 93:43–62CrossRefGoogle Scholar
  35. Perkins J (2012) Shape memory effects in alloys. Springer Science & Business MediaGoogle Scholar
  36. Ryou M, Cantillon-Murphy P, Azagury D, Shaikh SN, Ha G, Greenwalt I, Ryan MB, Lang JH, Thompson, CC (2011) Smart self-assembling magnets for endoscopy (SAMSEN) for transoral endoscopic creation of immediate gastrojejunostomy (with video). Gastrointest Endosc 73.353–359Google Scholar
  37. Safranski DL, Smith KE, Gall K (2013) Mechanical requirements of shape-memory polymers in biomedical devices. Polym Rev 53:76–91CrossRefGoogle Scholar
  38. Serrano MC, Carbajal L, Ameer GA (2011) Novel biodegradable shape-memory elastomers with drug-releasing capabilities. Adv Mater 23:2211–2215CrossRefGoogle Scholar
  39. Shah K, Maghsoudlou P (2016) Enzyme-linked immunosorbent assay (ELISA): the basics. Br J Hosp Med (London, England: 2005) 77:C98–101Google Scholar
  40. Shojaei A, Li G (2013) Viscoplasticity analysis of semicrystalline polymers: a multiscale approach within micromechanics framework. Int J Plast 42:31–49CrossRefGoogle Scholar
  41. Sokolowski W (2010) Shape memory polymer foams for biomedical devices. Open Med Devices J 2:20–23CrossRefGoogle Scholar
  42. Tanzi MC, De Nardo L, Bertoldi S, Fare S (2015) Invasive surgical procedures. Shape Mem Polym Biomed Appl: 133Google Scholar
  43. Tanzi MC, De Nardo L, Bertoldi S, Fare S (2015) invasive surgical procedures. Shape Mem Polym Biomed Appl 133–156Google Scholar
  44. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefGoogle Scholar
  45. Turan D, Gunes G, SenihaGüner F (2016) Synthesis, characterization and O2 permeability of shape memory polyurethane films for fresh produce packaging. Packag Technol Sci 29:415–427CrossRefGoogle Scholar
  46. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B: Polym Phys 49:832–864CrossRefGoogle Scholar
  47. Wang L, Yang X, Chen H, Gong T, Li W, Yang G, Zhou S (2013) Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl Mater Interfaces 5:10520–10528CrossRefGoogle Scholar
  48. Wang Y, Tian W, Xie J, Liu Y (2016) Thermoelectric responsive shape memory graphene/hydro-epoxy composites for actuators. Micromachines 7:145CrossRefGoogle Scholar
  49. Wang K, Strandman S, Zhu XX (2017) A mini review: shape memory polymers for biomedical applications. Front Chem Sci Eng:1–11Google Scholar
  50. Ware T, Voit W, Gall K (2010) Effects of sensitizer length on radiation crosslinked shape–memory polymers. Radiat Phys Chem 79:446–453CrossRefGoogle Scholar
  51. Wei Q, Mukaida M, Kirihara K, Ishida T (2014) Experimental studies on the anisotropic thermoelectric properties of conducting polymer films. ACS Macro Lett 3:948–952CrossRefGoogle Scholar
  52. Westbrook KK, Mather PT, Parakh V, Dunn ML, Ge Q, Lee BM, Qi HJ (2011) Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mater Struct 20:065010CrossRefGoogle Scholar
  53. Wu G, Huang C, Li H, Ke Y, Fang GY, He JZ, Wang SH Chunlin D (2014) Controlling the biological activity and mechanical properties of sol–gel synthesized PEG–CaO–SiO2–P2O5 hybrid materials for bone tissue engineering. J Biomater Tissue Eng 4:1047–1053Google Scholar
  54. Xu J, Song J (2010) High performance shape memory polymer networks based on rigid nanoparticle cores. Proc Natl Acad Sci 107:7652–7657CrossRefGoogle Scholar
  55. Yakacki CM, Nguyen TD, Likos R, Lamell R, Guigou D, Gall K (2011) Impact of shape-memory programming on mechanically-driven recovery in polymers. Polymer 52:4947–4954CrossRefGoogle Scholar
  56. Yu Z, Liu Y, Fan M, Meng X, Li B, Zhang S (2010) Effects of solvent, casting temperature, and guest/host stoichiometries on the properties of shape memory material based on partial α-CD-PEG inclusion complex. J Polym Sci Part B: Polym Phys 48:951–957CrossRefGoogle Scholar
  57. Yu K, Zhang Z, Liu Y, Leng J (2011) Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity. Appl Phys Lett 98:074102CrossRefGoogle Scholar
  58. Zhang X, Zhou Q, Liu H, Liu H (2014) UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers. Soft Matter 10:3748–3754CrossRefGoogle Scholar
  59. Zhang F, Zhang Z, Zhou T, Liu Y, Leng J (2015) Shape memory polymer nanofibers and their composites: electrospinning, structure, performance, and applications. Front Mater 2:62Google Scholar
  60. Zhou HY, Zhang YP, Zhang WF, Chen XG (2011) Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohyd Polym 83:1643–1651CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aqib Muzaffar
    • 1
  • Kalim Deshmukh
    • 1
  • M. Basheer Ahamed
    • 1
    Email author
  • S. K. Khadheer Pasha
    • 2
  1. 1.Department of PhysicsB.S. Abdur Rahman Crescent Institute of Science and TechnologyChennaiIndia
  2. 2.Department of PhysicsVIT-AP UniversityGunturIndia

Personalised recommendations