Project and Resource Optimization (PRO) for IT Service Delivery

  • Haitao LiEmail author
  • Cirpriano A. Santos
Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)


This paper identifies the needs and challenges of IT service project delivery. A hierarchical Project and Resource Optimization (PRO) architecture is presented to provide a comprehensive and systematic roadmap for coping with the decision needs at the strategic, tactical, operational and executional levels. We highlight the data-driven feature of PRO with emphasis on the modeling and algorithmic methdologies to provide dynamic and adaptive decision-support.


Project management Resource management Mathematical programming Analytics Data-driven 


  1. 1.
    Anderson EG. The nonstationary staff-planning problem with business cycle and learning effects. Manage Sci. 2001;47(6):817–32.Google Scholar
  2. 2.
    April J, Glover F, Kelly JP, Laguna M. Simulation-based optimization: practical introduction to simulation optimization. In: Proceedings of the 35th conference on Winter simulation: driving innovation. 2003. p. 71–78 (Winter Simulation Conference).Google Scholar
  3. 3.
    Bellman RE. Dynamic programming. New York: Courier Dover Publications; 1957.Google Scholar
  4. 4.
    Bertsekas DP, Bertsekas DP, Bertsekas DP, Bertsekas DP. Dynamic programming and optimal control, vol. 1. MA: Athena scientific Belmont; 1995.Google Scholar
  5. 5.
    Bertsekas DP, Tsitsiklis JN, Wu C. Rollout algorithms for combinatorial optimization. J Heuristics. 1997;3(3):245–62.Google Scholar
  6. 6.
    Birge JR, Louveaux F. Introduction to stochastic programming. New York: Springer Science & Business Media; 2011.Google Scholar
  7. 7.
    Cao H, Hu J, Jiang C, Kumar T, Li TH, Liu Y, Lu Y, Mahatma S, Mojsilović A, Sharma M, et al. Onthemark: integrated stochastic resource planning of human capital supply chains. Interfaces. 2011;41(5):414–35.Google Scholar
  8. 8.
    CEB. The new model for it service delivery, volume i: design, definition and governance. Report, CIO Leadership Council, The Corporate Executive Board Company; 2012.Google Scholar
  9. 9.
    CEB. The future of corporate it: 2013–2017. The Corporate Executive Board. Company: Report; 2013.Google Scholar
  10. 10.
    Cheang B, Li H, Lim A, Rodrigues B. Nurse rostering problems–a bibliographic survey. Eur J Oper Res. 2003;151(3):447–60.Google Scholar
  11. 11.
    Davis MJ, Lu Y, Sharma M, Squillante MS, Zhang B. Stochastic optimization models for workforce planning, operations, and risk management. Serv Sci. 2018;10(1):40–57.Google Scholar
  12. 12.
    De Bruecker P, Van den Bergh J, Beliën J, Demeulemeester E. Workforce planning incorporating skills: state of the art. Eur J Oper Res. 2015;243(1):1–16.Google Scholar
  13. 13.
    Ernst AT, Jiang H, Krishnamoorthy M, Sier D. Staff scheduling and rostering: a review of applications, methods and models. Eur J Oper Res. 2004;153(1):3–27.Google Scholar
  14. 14.
    Fogliatto FS, Da Silveira GJ, Borenstein D. The mass customization decade: an updated review of the literature. Int J Prod Econ. 2012;138(1):14–25.Google Scholar
  15. 15.
    Fu MC. Optimization for simulation: theory vs. practice. INFORMS J Comput. 2002;14(3):192–215.Google Scholar
  16. 16.
    Fu MC, Glover FW, April J. Simulation optimization: a review, new developments, and applications. In: Proceedings of the 37th conference on winter simulation. 2005. p. 83–95 (winter simulation conference).Google Scholar
  17. 17.
    Gans N, Zhou YP. Managing learning and turnover in employee staffing. Oper Res. 2002;50(6):991–1006.Google Scholar
  18. 18.
    Garey MR, Johnson DS. Computers and intractability. A guide to the theory of np-completeness. 1983.Google Scholar
  19. 19.
    Gass SI. Military manpower planning models. Comput Oper Res. 1991;18(1):65–73.Google Scholar
  20. 20.
    Gass SI, Collins RW, Meinhardt CW, Lemon DM, Gillette MD. Or practice the army manpower long-range planning system. Oper Res. 1988;36(1):5–17.Google Scholar
  21. 21.
    Glover F, Kochenberger G. Handbook of metaheuristics. Berlin: Springer; 2005.Google Scholar
  22. 22.
    Gresh DL, Connors DP, Fasano JP, Wittrock RJ. Applying supply chain optimization techniques to workforce planning problems. IBM J Res Dev. 2007;51(3.4):251–61.Google Scholar
  23. 23.
    Grinold R, Marshall K. Manpower planning models. Co: North-Holland Pub; 1977.Google Scholar
  24. 24.
    Hillier FS. Introduction to operations research. New York: Tata McGraw-Hill Education; 2012.Google Scholar
  25. 25.
    Huang HC, Lee LH, Song H, Eck BT. Simmana simulation model for workforce capacity planning. Comput Oper Res. 2009;36(8):2490–7.Google Scholar
  26. 26.
    Li H, Santos CA, Fuciec A, Gonzalez MT, Jain S, Marquez C, Mejia C, Zhang A. Optimizing the labor strategy for professional service firms. IEEE Trans Eng Manage. 2018a (To appear).Google Scholar
  27. 27.
    Li H, Santos CA, Lopez I. New models and methods for project portfolio optimization. Working paper, University of Missouri–St Louis. 2016.Google Scholar
  28. 28.
    Li H, Vargas M, Santos CA, Ramshaw L, Lopez I, Perez S, Valencia C. Optimizing large-scale stochastic resource planning. Working paper, University of Missouri –St. Louis. 2018b.Google Scholar
  29. 29.
    Li H, Womer K. Scheduling projects with multi-skilled personnel by a hybrid milp/cp benders decomposition algorithm. J Sched. 2009;12(3):281–98.Google Scholar
  30. 30.
    Li H, Womer K. Stochastic resource-constrained project scheduling and its military applications. MORS Phalanx. 2011.Google Scholar
  31. 31.
    Li H, Womer K. Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming. Eur J Oper Res. 2015;246(1):20–33.Google Scholar
  32. 32.
    Nemhauser G, Wolsey L. Integer and combinatorial optimization. New York: Wiley; 1988.Google Scholar
  33. 33.
    Pinedo M. Planning and scheduling in manufacturing and services. Berlin: Springer; 2005.Google Scholar
  34. 34.
    Powell WB. Introduction to approximate dynamic programming. Approximate dynamic programming: solving the curses of dimensionality; 2011. p . 91–127.Google Scholar
  35. 35.
    Puterman ML. Markov decision processes: discrete stochastic dynamic programming. New york: Wiley; 2014.Google Scholar
  36. 36.
    Santos CA, Gonzalez MT, Li H, Chen KY, Beyer D, Biligi S, Feng Q, Kumar R, Jain S, Ramanujan R, Zhang A. Hp enterprise services uses optimization for resource planning. Interfaces. 2013;43(2):152–69.Google Scholar
  37. 37.
    Schwindt C, Zimmermann J. Handbook on project management and scheduling. International handbooks on information systems, vol. 1&2. Heidelberg: Springer; 2015.Google Scholar
  38. 38.
    Secomandi N. A rollout policy for the vehicle routing problem with stochastic demands. Oper Res. 2001;49(5):796–802.Google Scholar
  39. 39.
    Si J. Handbook of learning and approximate dynamic programming, vol. 2. New York: Wiley; 2004.Google Scholar
  40. 40.
    Simao HP, Day J, George AP, Gifford T, Nienow J, Powell WB. An approximate dynamic programming algorithm for large-scale fleet management: a case application. Transp Sci. 2009;43(2):178–97.Google Scholar
  41. 41.
    Solomon S, Li H, Womer K, Santos CA. Approximate dynamic programming for multi-period stochastic resource planning. Forthcoming in decision sciences, 2018.Google Scholar
  42. 42.
    Sutton RS, Barto AG. Introduction to reinforcement learning, vol. 135. Cambridge: MIT Press; 1998.Google Scholar
  43. 43.
    Van den Bergh J, Beliën J, De Bruecker P, Demeulemeester E, De Boeck L. Personnel scheduling: a literature review. Eur J Oper Res. 2013;226(3):367–85.Google Scholar
  44. 44.
    Wren A. General review of the use of computers in scheduling buses and their crews. Computer scheduling of public transport; 1981. p. 3–16.Google Scholar
  45. 45.
    Yu G, Pachon J, Thengvall B, Chandler D, Wilson A. Optimizing pilot planning and training for continental airlines. Interfaces. 2004;34(4):253–64.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Business AdministrationUniversity of Missouri–St. LouisSt. LouisUSA
  2. 2.Gurobi OptimizationBeavertonUSA

Personalised recommendations