Advertisement

Stability of Flexible Shallow Shells Subject to Transversal Loads and Heat Flow

  • Vadim A. Krysko
  • Jan AwrejcewiczEmail author
  • Maxim V. Zhigalov
  • Valeriy F. Kirichenko
  • Anton V. Krysko
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 42)

Abstract

In this chapter we study the stability of flexible shells with rectangular planforms under the impact of heat and subject to various loads, and we take into account the dependence of the heat and mechanical characteristics on temperature. Here we do not consider coupling of the thermal and deformation fields.

References

  1. 1.
    Awrejcewicz, J., Krysko, V. A., Kutepov, I. E., Zagniboroda, N. A., Dobriyan, V., Papkova, I. V. (2015). Chaotic vibrations of flexible curvilinear beams in temperature and electric fields. International Journal of Non-Linear Mechanics, 76, 29–41.CrossRefGoogle Scholar
  2. 2.
    Awrejcewicz, J., Krysko, V. A., Papkova, I. V., & Krysko, A. V. (2016). Deterministic chaos in one dimensional continuous systems. Singapore: World Scientific.Google Scholar
  3. 3.
    Awrejcewicz, J., Kutepov, I., Pavlov, S. P., Papkova, I. V., & Krysko, A. V. (2016). Non-linear dynamics of flexible curvilinear Bernoulli-Euler nano-beams in a stationary temperature field. Journal of Engineering and Applied Sciences, 11(9), 2079–2084.Google Scholar
  4. 4.
    Krysko, A. V., Kutepov, I., Papkova, I. V., Saltykova, O. A., & Pavlov, S. P. (2016). The study of the size-dependent geometrically nonlinear Bernoulli-Euler beam in the temperature field Impacted by the transversal load. International Journal of Applied Engineering Research (IJAER), 11, 10398–10401.Google Scholar
  5. 5.
    Kornishin, M. S. (1964). Nonlinear problems of theory of plates and shallow shells and methods of their solution. Moscow: Nauka.Google Scholar
  6. 6.
    Kovalenko, A. D. (1970). Fundamentals of thermoelasticity. Kiev: Naukova Dumka (in Russian).Google Scholar
  7. 7.
    Krysko, V. A. (1976). Nonlinear statics and dynamics of inhomogeneous membranes. Saratov: Publishing House Saratov University Press.Google Scholar
  8. 8.
    Volmir, A. S. (1972). The nonlinear dynamics of plates and shells. Moscow: Nauka (in Russian).Google Scholar
  9. 9.
    Shiau, A. S., Soong, T. T., & Roth, R. S. (1974). Dynamic buckling of conical shells with imperfections. AIAA Journal, 12(6), 24–30.Google Scholar
  10. 10.
    Cverna, F. (2006). Worldwide guide to equivalent irons and steels. ASM International.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vadim A. Krysko
    • 1
  • Jan Awrejcewicz
    • 2
    Email author
  • Maxim V. Zhigalov
    • 1
  • Valeriy F. Kirichenko
    • 1
  • Anton V. Krysko
    • 3
  1. 1.Department of Mathematics and ModelingSaratov State Technical UniversitySaratovRussia
  2. 2.Department of Automation, Biomechanics and MechatronicsLodz University of TechnologyLodzPoland
  3. 3.Department of Applied Mathematics and Systems AnalysisSaratov State Technical UniversitySaratovRussia

Personalised recommendations