Advertisement

Risk Prediction and Sex Offending

  • Jacinta R. Cording
  • Tony Ward
  • Sarah M. Beggs Christofferson
Chapter

Abstract

Accurately predicting the risk of future sexual offending posed by individuals is a key task within the criminal justice system, providing vital information to inform treatment planning and sentence management. In particular, risk prediction plays an important role in ensuring that a balance is struck between minimizing risk to the public and supporting self-improvement and change amongst individuals who have committed sexual offences. Although risk prediction is therefore widely utilized in criminal justice and rehabilitation settings, there are a number of theoretical and practical issues that are yet to be addressed regarding its use. These issues include the validity and generalizability of prediction tools, the indistinct nature of measured risk factors, and how to appropriately incorporate treatment change into the prediction of future behaviour. We hope that the discussion of these issues will prompt further thinking regarding the current role of risk prediction in treatment and sentence management and encourage further research to address these challenges.

Keywords

Sexual offending Violent offending Risk prediction Risk assessment Dynamic risk factors Treatment change 

References

  1. Allan, M., Grace, R. C., Rutherford, B., & Hudson, S. M. (2007). Psychometric assessment of dynamic risk factors for child molesters. Sexual Abuse: A Journal of Research and Treatment, 19(4), 347–367.  https://doi.org/10.1007/s11194-007-9052-5CrossRefGoogle Scholar
  2. Andrews, D. A., & Bonta, J. (2016). The psychology of criminal conduct (6th ed.). Boston, MA: Anderson Publishing Ltd..Google Scholar
  3. Andrews, D. A., Bonta, J., & Wormith, J. S. (2004). The level of service/case management inventory. Toronto, Canada: Multi-Health Systems.Google Scholar
  4. Andrews, D. A., Bonta, J., & Wormith, J. S. (2006). The recent past and near future of risk and/or need assessment. Crime & Delinquency, 52(1), 7–27.  https://doi.org/10.1177/0011128705281756CrossRefGoogle Scholar
  5. Barbaree, H. E., Langton, C. M., & Peacock, E. J. (2006). Different actuarial risk measures produce different risk rankings for sexual offenders. Sexual Abuse: A Journal of Research and Treatment, 18(4), 423–440.CrossRefGoogle Scholar
  6. Barnett, G. D., Wakeling, H., Mandeville-Norden, R., & Rakestrow, J. (2013). Does change in psychometric test scores tell us anything about risk of reconviction in sexual offenders? Psychology, Crime & Law, 19(1), 1–26.  https://doi.org/10.1080/1068316X.2011.607820CrossRefGoogle Scholar
  7. Beauregard, E., Leclerc, B., & Lussier, P. (2012). Decision making in the crime commission process: Comparing rapists, child molesters, and victim-crossover sex offenders. Criminal Justice and Behavior, 39(10), 1275–1295.  https://doi.org/10.1177/0093854812453120CrossRefGoogle Scholar
  8. Beech, A. R., Friendship, C., Erikson, M., & Hanson, R. K. (2002). The relationship between static and dynamic risk factors and reconviction in a sample of U.K. child abusers. Sexual Abuse: A Journal of Research and Treatment, 14(2), 155–167, 197.  https://doi.org/10.1177/107906320201400206CrossRefGoogle Scholar
  9. Beech, A. R., Parrett, N., Ward, T., & Fisher, D. (2009). Assessing female sexual offenders’ motivations and cognitions: An exploratory study. Psychology, Crime & Law, 15(2–3), 201–216.  https://doi.org/10.1080/10683160802190921CrossRefGoogle Scholar
  10. Beggs, S. M., & Grace, R. C. (2010). Assessment of dynamic risk factors: An independent validation study of the violence risk scale: Sexual offender version. Sexual Abuse: A Journal of Research and Treatment, 22(2), 234–251.  https://doi.org/10.1177/1079063210369014CrossRefGoogle Scholar
  11. Beggs, S. M., & Grace, R. C. (2011). Treatment gain for sexual offenders against children predicts reduced recidivism: A comparative validity study. Journal of Consulting and Clinical Psychology, 79(2), 182–192.  https://doi.org/10.1037/a0022900CrossRefPubMedGoogle Scholar
  12. Boer, D. P., Hart, S. D., Kropp, P. R., & Webster, C. D. (1997). Manual for the Sexual Violence Risk-20: Professional guidelines for assessing risk of sexual violence. Vancouver, Canada: Mental Health, Law and Policy Institute.Google Scholar
  13. Borsboom, D., Mellenbergh, G. J., & van Heerden, J. (2004). The concept of validity. Psychological Review, 111(4), 1061–1071.  https://doi.org/10.1037/0033-295X.111.4.1061CrossRefPubMedGoogle Scholar
  14. Cohen, J. (1994). The Earth is round (p < .05). The American Psychologist, 49(12), 997–1003.  https://doi.org/10.1037/0003-066X.49.12.997CrossRefGoogle Scholar
  15. Colliver, J. A., Conlee, M. J., & Verhulst, S. J. (2012). From test validity to construct validity... and back? Medical Education, 46(4), 366–371.  https://doi.org/10.1111/j.1365-2923.2011.04194.xCrossRefPubMedGoogle Scholar
  16. Cording, J. R., Beggs Christofferson, S. M., & Grace, R. C. (2016). Challenges for the theory and application of dynamic risk factors. Psychology, Crime & Law, 22(1–2), 84–103.  https://doi.org/10.1080/1068316X.2015.1111367CrossRefGoogle Scholar
  17. Cortoni, F. (2010). The assessment of female sexual offenders. In T. A. Gannon & F. Cortoni (Eds.), Female sexual offenders: Theory, assessment and treatment (pp. 87–100). West Sussex, UK: Wiley.CrossRefGoogle Scholar
  18. Cortoni, F., Hanson, R. K., & Coache, M.-E. (2010). The recidivism rates of female sexual offenders are low: A meta-analysis. Sexual Abuse: Journal of Research and Treatment, 22(4), 387–401.  https://doi.org/10.1177/1079063210372142CrossRefGoogle Scholar
  19. Craig, L. A., Browne, K. D., Stringer, I., & Beech, A. R. (2004). Limitations in actuarial risk assessment of sexual offenders: A methodological note. The British Journal of Forensic Practice, 6, 16–32.CrossRefGoogle Scholar
  20. Craissati, J., & Beech, A. (2003). A review of dynamic variables and their relationship to risk prediction in sex offenders. Journal of Sexual Aggression, 9(1), 41–55.  https://doi.org/10.1080/355260031000137968CrossRefGoogle Scholar
  21. Dempster, R. J., & Hart, S. D. (2002). The relative utility of fixed and variable risk factors in discriminating sexual recidivists and nonrecidivists. Sexual Abuse: A Journal of Research and Treatment, 14(2), 121–138.  https://doi.org/10.1177/107906320201400204CrossRefGoogle Scholar
  22. Ford, H. (2010). The treatment needs of female sexual offenders. In T. A. Gannon & F. Cortoni (Eds.), Female sexual offenders: Theory, assessment and treatment (pp. 101–117). West Sussex, UK: Wiley.CrossRefGoogle Scholar
  23. Gannon, T. A., & Rose, M. R. (2015). Bias in female child molesters, 194–207.Google Scholar
  24. Gannon, T. A., Ward, T., & Collie, R. (2007). Cognitive distortions in child molesters: Theoretical and research developments over the past two decades. Aggression and Violent Behavior, 12(4), 402–416.  https://doi.org/10.1016/j.avb.2006.09.005CrossRefGoogle Scholar
  25. Gannon, T. A., Rose, M. R., & Cortoni, F. (2010). Developments in female sexual offending and considerations for future research and treatment. In T. A. Gannon & F. Cortoni (Eds.), Female sexual offenders: Theory, assessment and treatment (pp. 181–198). West Sussex, UK: Wiley.CrossRefGoogle Scholar
  26. Haig, B. D. (2012). From construct validity to theory validation. Measurement: Interdisciplinary Research and Perspectives, 10(1–2), 59–62.Google Scholar
  27. Haig, B. D. (2013). Detecting psychological phenomena: Taking bottom-up research seriously. The American Journal of Psychology, 126(2), 135–153.  https://doi.org/10.5406/amerjpsyc.126.2.0135CrossRefPubMedGoogle Scholar
  28. Haig, B. D. (2014). Investigating the psychological world: Scientific method in the behavioral sciences. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  29. Hanson, R. K. (1997). The development of a brief actuarial risk scale for sexual offense recidivism. (User report 97-04). Ottawa, Canada: Department of the Solicitor General of Canada.Google Scholar
  30. Hanson, R. K., & Bourgon, G. (2016). Advancing sexual offender risk assessment: Standardized risk levels based on psychologically meaningful offender characteristics. In F. S. Taxman (Ed.), Handbook on risk and need assessment: Theory and practice. London: Routledge.Google Scholar
  31. Hanson, R. K., & Bussiere, M. T. (1998). Predicting relapse: A meta-analysis of sexual offender recidivism studies. Journal of Consulting and Clinical Psychology, 66(2), 348–362.CrossRefGoogle Scholar
  32. Hanson, R. K., & Harris, A. J. R. (2000). Where should we intervene?: Dynamic predictors of sexual offense recidivism. Criminal Justice and Behavior, 27(1), 6–35.  https://doi.org/10.1177/0093854800027001002CrossRefGoogle Scholar
  33. Hanson, R. K., & Harris, A. J. R. (2001). A structured approach to evaluating change among sexual offenders. Sexual Abuse: A Journal of Research and Treatment, 13(2), 105–122.CrossRefGoogle Scholar
  34. Hanson, R. K., & Morton-Bourgon, K. E. (2009). The accuracy of recidivism risk assessments for sexual offenders: A meta-analysis of 118 prediction studies. Psychological Assessment, 21(1), 1–21.  https://doi.org/10.1037/a0014421CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hanson, R. K., & Thornton, D. (1999). Static 99: Improving actuarial risk assessments for sex offenders. (User report 1999-02). Ottawa, Canada: Department of the Solicitor General of Canada.Google Scholar
  36. Hanson, R. K., Harris, A. J. R., Scott, T. L., & Helmus, L. M. (2007). Assessing the risk of sexual offenders on community supervision: The dynamic supervision project (No. 2007-05). Ottawa, Canada: Public Safety Canada.Google Scholar
  37. Hart, S. D., Kropp, P. R., Laws, D. R., Klaver, J., Logan, C., & Watt, K. A. (2003). The risk for sexual violence protocol (RSVP). Burnaby, Canada: Simon Fraser University, Mental Health, Law and Policy Institute.Google Scholar
  38. Heffernan, R., & Ward, T. (2015). The conceptualization of dynamic risk factors in child sex offenders: An agency model. Aggression and Violent Behavior, 24, 250–260.  https://doi.org/10.1016/j.avb.2015.07.001CrossRefGoogle Scholar
  39. Helmus, L. M., & Babchishin, K. M. (2017). Primer on risk assessment and the statistics used to evaluate its accuracy. Criminal Justice and Behavior, 44, 8–25.CrossRefGoogle Scholar
  40. Hudson, S. M., Wales, D. S., Bakker, L., & Ward, T. (2002). Dynamic risk factors: The Kia Marama evaluation. Sexual Abuse: A Journal of Research and Treatment, 14(2), 103–119.  https://doi.org/10.1177/107906320201400203CrossRefGoogle Scholar
  41. Judge, J., Quayle, E., O’Rourke, S., Russell, K., & Darjee, R. (2014). Referrers’ views of structured professional judgement risk assessment of sexual offenders: A qualitative study. Journal of Sexual Aggression, 20(1), 94–109.  https://doi.org/10.1080/13552600.2013.767948CrossRefGoogle Scholar
  42. Jung, S., & Gulayets, M. (2011). Using clinical variables to evaluate treatment effectiveness in programmes for sexual offenders. Journal of Sexual Aggression, 17(2), 166–180.  https://doi.org/10.1080/13552601003802238CrossRefGoogle Scholar
  43. Kivlighan, D. M., & Tarrant, J. M. (2001). Does group climate mediate the group leadership-group member outcome relationship?: A test of Yalom’s hypotheses about leadership priorities. Group Dynamics, 5(3), 220–234.  https://doi.org/10.1037//1089-2699.5.3.220CrossRefGoogle Scholar
  44. Marshall, W. L., Hamilton, K., & Fernandez, Y. (2001). Empathy deficits and cognitive distortions in child molesters. Sexual Abuse : A Journal of Research and Treatment, 13(2), 123–130.  https://doi.org/10.1177/107906320101300205CrossRefGoogle Scholar
  45. Nunes, K. L., & Babchishin, K. M. (2012). Construct validity of stable-2000 and stable-2007 scores. Sexual Abuse: A Journal of Research and Treatment, 24(1), 29–45.  https://doi.org/10.1177/1079063211404921CrossRefGoogle Scholar
  46. Ó Ciardha, C., & Gannon, T. A. (2011). Are the cognitive distortions of child molesters in need of treatment? Journal of Sexual Aggression, 17(2), 130–141.  https://doi.org/10.1080/13552600.2011.580573CrossRefGoogle Scholar
  47. Olver, M. E., Wong, S. C. P., Nicholaichuk, T. P., & Gordon, A. (2007). The validity and reliability of the violence risk scale-sexual offender version: Assessing sex offender risk and evaluating therapeutic change. Psychological Assessment, 19(3), 318–329.  https://doi.org/10.1037/1040-3590.19.3.318CrossRefPubMedGoogle Scholar
  48. Olver, M. E., Beggs Christofferson, S. M., Grace, R. C., & Wong, S. C. P. (2013). Incorporating change information into sexual offender risk assessments using the violence risk scale-sexual offender version. Sexual Abuse: A Journal of Research and Treatment, 20(10), 1–28.  https://doi.org/10.1177/1079063213502679CrossRefGoogle Scholar
  49. Olver, M. E., Kingston, D. A., Nicholaichuk, T. P., & Wong, S. C. (2014a). A psychometric examination of treatment change in a multisite sample of treated Canadian federal sexual offenders. Law and Human Behavior, 38(6), 544–559.  https://doi.org/10.1037/lhb0000086CrossRefPubMedGoogle Scholar
  50. Olver, M. E., Nicholaichuk, T. P., Kingston, D. A., & Wong, S. C. P. (2014b). A multisite examination of sexual violence risk and therapeutic change. Journal of Consulting and Clinical Psychology, 82(2), 312–324.  https://doi.org/10.1037/a0035340CrossRefPubMedGoogle Scholar
  51. Olver, M. E., Nicholaichuk, T. P., & Wong, S. C. P. (2014c). The predictive and convergent validity of a psychometric battery used to assess sexual offenders in a treatment programme: An 18-year follow-up. Journal of Sexual Aggression, 20(2), 216–239.  https://doi.org/10.1080/13552600.2013.816791CrossRefGoogle Scholar
  52. Olver, M. E., Beggs Christofferson, S. M., & Wong, S. C. P. (2015). Evaluation and applications of the clinically significant change method with the violence risk scale-sexual offender version: Implications for risk-change communication. Behavioral Sciences & the Law, 33(1), 92–110.CrossRefGoogle Scholar
  53. Prentky, R. A., Lee, A. F. S., Knight, R. A., & Cerce, D. (1997). Recidivism rates among child molesters and rapists: A methodological analysis. Law and Human Behavior, 21(6), 635–659.CrossRefGoogle Scholar
  54. Prochaska, J. O., Diclemente, C. C., & Norcross, J. C. (1992). In search of how people change: Applications to addictive behaviors. American Psychologist, 47, 1102–1114.  https://doi.org/10.3109/10884609309149692CrossRefPubMedGoogle Scholar
  55. Quinsey, V. L., Harris, G. T., Rice, M. E., & Cormier, C. A. (1998). Violent offenders: Appraising and managing risk. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  56. Reisig, M. D., Holtfreter, K., & Morash, M. (2006). Assessing recidivism risk across female pathways to crime. Justice Quarterly, 23(3), 384–405.  https://doi.org/10.1080/07418820600869152CrossRefGoogle Scholar
  57. Robertiello, G., & Terry, K. J. (2007). Can we profile sex offenders? A review of sex offender typologies. Aggression and Violent Behavior, 12(5), 508–518.  https://doi.org/10.1016/j.avb.2007.02.010CrossRefGoogle Scholar
  58. Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test. Psychological Bulletin, 57(5), 416–428.  https://doi.org/10.1037/h0042040CrossRefPubMedGoogle Scholar
  59. Schwalbe, C. S. (2008). A meta-analysis of juvenile justice risk assessment instruments. Predictive validity by gender. Criminal Justice and Behavior, 35(11), 1367–1381.  https://doi.org/10.1177/0093854808324377CrossRefGoogle Scholar
  60. Sigre-Leirós, V., Carvalho, J., & Nobre, P. (2015). Cognitive schemas and sexual offending: Differences between rapists, pedophilic and nonpedophilic child molesters, and nonsexual offenders. Child Abuse and Neglect, 40, 81–92.  https://doi.org/10.1016/j.chiabu.2014.10.003CrossRefPubMedGoogle Scholar
  61. Vess, J., & Skelton, A. (2010). Sexual and violent recidivism by offender type and actuarial risk: Reoffending rates for rapists, child molesters and mixed-victim offenders. Psychology, Crime & Law, 16(7), 541–554.  https://doi.org/10.1080/10683160802612908CrossRefGoogle Scholar
  62. Ward, T. (2013). Addressing the dual relationship problem in forensic and correctional practice. Aggression and Violent Behavior, 18(1), 92–100.CrossRefGoogle Scholar
  63. Ward, T. (2016). Dynamic risk factors: Scientific kinds or predictive constructs. Psychology, Crime & Law, 22(1–2), 2–16.  https://doi.org/10.1080/1068316X.2015.1109094CrossRefGoogle Scholar
  64. Ward, T., & Beech, A. (2015). Dynamic risk factors: A theoretical dead-end? Psychology, Crime & Law, 21, 100–113.  https://doi.org/10.1080/1068316X.2014.917854CrossRefGoogle Scholar
  65. Ward, T., & Fortune, C. (2016). The role of dynamic risk factors in the explanation of offending. Aggression and Violent Behavior, 29, 79–88.  https://doi.org/10.1016/j.avb.2016.06.007CrossRefGoogle Scholar
  66. Wong, S. C. P., Olver, M. E., Nicholaichuk, T. P., & Gordon, A. (2003). The violence risk scale – sexual offender version (VRS-SO). Saskatoon, Canada: Regional Psychiatric Centre and University of Saskatchewan.Google Scholar
  67. Wormith, J. S., Hogg, S., & Guzzo, L. (2012). The predictive validity of a general risk/needs assessment inventory on sexual offender recidivism and an exploration of the professional override. Criminal Justice and Behavior, 39(12), 1511–1538.  https://doi.org/10.1177/0093854812455741CrossRefGoogle Scholar
  68. Yesberg, J. A., Scanlan, J. M., Hanby, L. J., Serin, R. C., & Polaschek, D. L. L. (2015). Predicting women’s recidivism: Validating a dynamic community-based “gender-neutral” tool. Probation Journal, 62(1), 33–48.  https://doi.org/10.1177/0264550514562851CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jacinta R. Cording
    • 1
  • Tony Ward
    • 2
  • Sarah M. Beggs Christofferson
    • 1
  1. 1.Department of PsychologyUniversity of CanterburyChristchurchNew Zealand
  2. 2.School of PsychologyVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations