Advertisement

The Invasions of Genes and Plants

  • Gero VoglEmail author
Chapter

Abstract

Diffusion in physics and chemistry follows simple laws, in principle, already set out by Fourier and Fick. Diffusion of living beings, and even more so the spread of immaterial goods, such as languages or information is more complex. Simple equations would fail since a living being or an idea may face different conditions after every step in diffusion. Here, we often have to resort to computer simulations, which can encompass the details.

References

  1. J.M. Bullock, D.S. Chapman, S. Schafer et al., Assessing and controlling the spread and the effects of common ragweed in Europe, Final report to European Commission, 2012Google Scholar
  2. D.S. Chapman, L. Makra, R. Albertini et al., Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion. Glob. Change Biol. 22, 3067–3079 (2016)ADSCrossRefGoogle Scholar
  3. F. Essl et al., Biological flora of the British Isles: Ambrosia Artemisiifolia. J. Ecol. 103, 1069–1098 (2015)CrossRefGoogle Scholar
  4. R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)CrossRefGoogle Scholar
  5. L. Hamaoui-Laguel et al., Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nature Climate Change 5, 766–771 (2015)ADSCrossRefGoogle Scholar
  6. M. Leitner, I. Kühn, Dispersal in plants and animals, ch. 3 in Diffusive Spreading in Nature, Technology and Society, ed. by A. Bunde, J. Caro, J. Kärger, G. Vogl (Springer, 2018)Google Scholar
  7. R. Luther, Räumliche Fortpflanzung chemischer Reaktionen. Z. Elektrochemie 12, 596–600 (1906)CrossRefGoogle Scholar
  8. R. Richter, Description and prediction of the dispersion of Ambrosia artemisiifolia L. (common ragweed) as a diffusion process. Dissertation, Univ. Wien, 2015Google Scholar
  9. R. Richter, S. Dullinger, F. Essl, M. Leitner, G. Vogl, How to account for habitat suitability in weed management programmes? Biol. Invasions 15, 657–669 (2013a)CrossRefGoogle Scholar
  10. R. Richter et al., Spread of invasive ragweed: climate change, management and how to reduce allergy costs. J. Appl. Ecol. 50(6), 1422–1430 (2013b)CrossRefGoogle Scholar
  11. J.G. Skellam, Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)MathSciNetCrossRefGoogle Scholar
  12. M.G. Smolik et al., Integrating species distribution models and interacting particle systems to predict he spread of an invasive alien plant. J. Biogeogr. 37, 411–422 (2010)CrossRefGoogle Scholar
  13. G. Vogl et al., Modelling the spread of ragweed: effects of habitat, climate change and diffusion. Eur. Phys. J. 161, 167–173 (2008). Special TopicsADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fakultät für PhysikUniversität WienViennaAustria

Personalised recommendations