Advertisement

Probiotics as a Dietary Intervention for Reducing the Risk of Nonalcoholic Fatty Liver Disease

  • Fouad M. F. ElshaghabeeEmail author
  • Namita Rokana
  • Harsh Panwar
  • Knut J. Heller
  • Jürgen Schrezenmeir
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 28)

Abstract

Nonalcoholic fatty liver disease (NAFLD) is characterized by an increase in triglyceride fat content of liver cells without excessive consumption of alcohol. It is the most predominant liver disease among different age groups including children and adults. Unhealthy foods such as high fructose and high trans-fatty acids in saturated fat seem to be associated with the pathogenesis of NAFLD. Different clusters of gut microbiota, e.g., Firmicutes, could regulate the energy balance and fat storage. Furthermore, different metabolites of gut microbiota, for example, endogenous short chain fatty acids and ethanol, are associated with increased levels of lipogenesis. Additionally, metabolism of endogenous ethanol leads to the formation of acetaldehyde resulting in increased oxidative stress and ultimately inducing liver injury. Lipopolysaccharides of the outer membrane of Gram-negative gut bacteria may also initiate some low grade inflammation in liver tissues. However, few reports from NAFLD patients showed ordinary serum endotoxin levels, excluding endotoxemia from the pathogenesis of NAFLD.

Beneficial gut microbiota, chiefly lactic acid bacteria and bifidobacteria, may induce positive effects through suppression of inflammatory cascades and exclusion of NAFLD promoting microbes, promoting gut barrier functions reducing levels of NAFLD pathogenesis. Therefore, selective probiotic strains with proven efficacy for NAFLD management and validated safety can be considered as a promising futuristic approach for NAFLD management. In this chapter, we review the normal gut microbiota, gut microbiota shifts in obesity, the role of some gut microbiota metabolites and dietary fructose in development of NAFLD, and the protective effect of different probiotics in reduction the risk of NAFLD.

Keywords

NAFLD Obesity Diabetes type 2 Fructose syrup High fat diet Fast foods Metabolic syndrome Gut microbiota Firmicutes Bacteroides Bio-therapeutics Probiotics Bifidobacteria Lactobacilli Endogenous ethanol Short chain fatty acids Acetaldehyde Lipopolysaccharides Inflammation 

References

  1. Abu-Shanab A, Quigley EMM (2010) The role of the gut microbiota in non-alcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 7:691–701.  https://doi.org/10.1038/nrgastro.2010.172 CrossRefGoogle Scholar
  2. Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, Giammaria P, Reali L, Anania F, Nobili V (2014) Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 39(11):1276–1285CrossRefGoogle Scholar
  3. Aller R, De Luis DA, Izaola O, Conde R, Gonzalez Sagrado M, Primo D, De La Fuente B, Gonzalez J (2011) Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci 15:1090–1095Google Scholar
  4. Al-Muzafar HM, Amin KA (2017a) Efficacy of functional foods mixture in improving hypercholesterolemia, inflammatory and endothelial dysfunction biomarkers-induced by high cholesterol diet. Lipid Health Dis 16:194–204.  https://doi.org/10.1186/s12944-017-0585-4 CrossRefGoogle Scholar
  5. Al-Muzafar HM, Amin KA (2017b) Probiotic mixture improves fatty liver disease by virtue of its action on lipid profiles, leptin, and inflammatory biomarkers. BMC Complement Altern Med 17(1):43.  https://doi.org/10.1186/s12906-016-1540-z CrossRefGoogle Scholar
  6. Amr J, Burcelin R, Ruidavets JB, Cani PD, Fauvel J, Alessi MC, Chamontin B, Ferriéres J (2008) Energy intake is associated with endotoxemia in apparently health men. Am J Clin Nutr 87:1219–1223CrossRefGoogle Scholar
  7. Aparna SV, Panwar H, Chauhan R, Duary RK, Rathore RK, Batish VK, Grover S (2013) Modulation of anti-inflammatory response in lipopolysaccharide stimulated human THP-1 cell line and mouse model at gene expression level with indigenous putative probiotic lactobacilli. Genes Nutr 8(6):637–648.  https://doi.org/10.1007/s12263-013-0347-5 CrossRefGoogle Scholar
  8. Armutcu F, Coskun O, Gürel A, Kanter M, Can M, Ucar F, Unalacak M (2005) Thymosin alpha 1 attenuates lipid peroxidation and improves fructose-induced steatohepatitis in rats. Clin Biochem 38:540–547.  https://doi.org/10.1016/j.clinbiochem.2005.01.013 CrossRefGoogle Scholar
  9. Attene-Ramos MS, Wagner ED, Gaskins HR, Plewa MJ (2007) Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res 5(5):455–459CrossRefGoogle Scholar
  10. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. PNAS 101:15718–15723.  https://doi.org/10.1073/pnas.0407076101 CrossRefGoogle Scholar
  11. Baker SS, Baker RD, Liu W, Nowak NJ, Zhu L (2010) Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS ONE 5(3):e9570.  https://doi.org/10.1371/journal.pone.0009570 CrossRefGoogle Scholar
  12. Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AM, Ramakrishna BS (2010) Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr 103:335–358.  https://doi.org/10.1017/S0007114509992182 CrossRefGoogle Scholar
  13. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599.  https://doi.org/10.1128/AEM.72.5.3593-3599.2006 CrossRefGoogle Scholar
  14. Bergheim I, Weber S, Vos M, Krämer S, Volynets V, Kaserouni S, McClain CJ, Bischoff SC (2008) Antibiotics protect against fructose induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 48:983–992CrossRefGoogle Scholar
  15. Bhathena J, Martoni C, Kulamarva A, Tomaro-Duchesneau C, Malhotra M, Paul A, Urbanska AM, Prakash S (2013) Oral probiotic microcapsule formulation ameliorates non-alcoholic fatty liver disease in Bio F1B Golden Syrian Hamsters. PLoS One 8(3):e58394.  https://doi.org/10.1371/journal.pone.0058394 CrossRefGoogle Scholar
  16. Byrne CD, Olufadi R, Bruce KD, Cagampang FR, Ahmed MH (2009) Metabolic disturbances in non-alcoholic fatty liver disease. Clin Sci (Lond) 116:539–564.  https://doi.org/10.1042/CS20080253 CrossRefGoogle Scholar
  17. Candela M, Seibold G, Vitali B, Lachenmaier S, Eikmanns BJ, Brigidi P (2005) Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. Res Microbiol 156(8):887–895.  https://doi.org/10.1016/j.resmic.2005.04.006 CrossRefGoogle Scholar
  18. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007a) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772.  https://doi.org/10.2337/db06-1491 CrossRefGoogle Scholar
  19. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM (2007b) Selective increases of bifidobacteria in gut microflora improve high-fat-diet induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383CrossRefGoogle Scholar
  20. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NA, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481.  https://doi.org/10.2337/db07-1403 CrossRefGoogle Scholar
  21. Chauhan R, Vasanthakumari AS, Panwar H, Mallapa RH, Duary RK, Batish VK, Grover S (2014) Amelioration of colitis in mouse model by exploring antioxidative potentials of an indigenous probiotic strain of Lactobacillus fermentum Lf1. Biomed Res Int 3:206732.  https://doi.org/10.1155/2014/206732 CrossRefGoogle Scholar
  22. Chiva M, Soriano G, Rochat I, Peralta C, Rochat F, Llovet T, Mirelis B, Schiffrin EJ, Guarner C, Balanzó J (2002) Effect of Lactobacillus johnsonii La1 and antioxidants on intestinal flora an bacterial translocation in rats with experimental cirrhosis. J Hepatol 37:456–462CrossRefGoogle Scholar
  23. Claire BS, Collin LE, Jennifer L, Amber LH, John CR, Helen ER (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 299(2):G440–G448Google Scholar
  24. Clausen MR, Bonnén H, Tvede M, Mortensen PB (1991) Colonic fermentation to short-chain fatty acids is decreased in antibiotic-associated diarrhea. Gastroenterology 101:1497–1504CrossRefGoogle Scholar
  25. Collado MC, Meriluoto J, Salminen S (2007) Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 45(4):454–460CrossRefGoogle Scholar
  26. Cope K, Risby T, Diehl AM (2000) Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. Gastroenterology 119:1340–1347CrossRefGoogle Scholar
  27. Daubioul C, Rousseau N, Demeure R, Gallez B, Taper H, Declerck B, Delzenne N (2002) Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats. J Nutr 132:967–973CrossRefGoogle Scholar
  28. Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–845CrossRefGoogle Scholar
  29. Delzenne NM, Cani PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 11(31):15–31.  https://doi.org/10.1146/annurev-nutr-072610-145146 CrossRefGoogle Scholar
  30. Dethlefsen L, Eckburg PB, Bik EM, Relman DA (2006) Assembly of the human intestinal microbiota. Trends Ecol Evol 21:517–523.  https://doi.org/10.1016/j.tree.2006.06.013 CrossRefGoogle Scholar
  31. Eizaguirre I, Urkia N, Asensio AB, Zubillaga I, Zubillaga P, Vidales C, Garcia-Arenzana JM, Aldazabal P (2002) Probiotic supplementation reduces the risk of bacterial translocation in experimental short bowel syndrome. J Pediatr Surg 37(5):699–702CrossRefGoogle Scholar
  32. Elshaghabee FMF (2017) Probiotics food supplement for NAFLD. J Nutr Health Food Eng 6(4):00209Google Scholar
  33. Elshaghabee FMF, Bockelmann W, Meske D, de Vrese M, Walte HG, Schrezenmeir J, Heller KJ (2016) Ethanol production by selected intestinal microorganisms and lactic acid bacteria growing under different nutritional conditions. Front Microbiol 7:47. https://www.ncbi.nlm.nih.gov/pubmed/26858714
  34. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillusas potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490.  https://doi.org/10.3389/fmicb.2017.01490 CrossRefGoogle Scholar
  35. Esposito E, Iacono A, Bianco G, Autore G, Cuzzocrea S, Vajro P, Canani RB, Calignano A, Raso GM, Meli R (2009) Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats. J Nutr 139(5):905–911.  https://doi.org/10.3945/jn.108.101808 CrossRefGoogle Scholar
  36. Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetateconverting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841.  https://doi.org/10.1128/AEM.01296-0610.1128/AEM.01296-06 CrossRefGoogle Scholar
  37. Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R (2017a) Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. JPGN 70:413–417.  https://doi.org/10.1097/MPG.0000000000001422 CrossRefGoogle Scholar
  38. Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R (2017b) Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutr 64(3):413–417CrossRefGoogle Scholar
  39. Finegold S, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, McTeague M, Sandler R, Wexler H, Marlowe EM, Collins MD, Lawson PA, Summanen P, Baysallar M, Tomzynski TJ, Read E, Johnson E, Rolfe R, Nasir P, Shah H, Haake DA, Manning P, Kaul A (2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35:S6–S16.  https://doi.org/10.1086/341914 CrossRefGoogle Scholar
  40. Gabrielli M, Lauritano EC, Scarpellini E, Lupascu A, Ojetti V, Gasbarrini G, Silveri NG, Gasbarrini A (2009) Bacillus clausii as a treatment of small intestinal bacterial overgrowth. Am J Gastroenterol 104:1327–1328.  https://doi.org/10.1038/ajg.2009.91 CrossRefGoogle Scholar
  41. Gustot T, Lemmers A, Moreno C, Nagy N, Quertinmont E, Nicaise C, Franchimont D, Louis H, Devière J, Le Moine O (2006) Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 43:989–1000.  https://doi.org/10.1002/hep.21138 CrossRefGoogle Scholar
  42. Hanover LM, White JS (1993) Manufacturing, composition, and applications of fructose. Am J Clin Nutr 58:724S–732SCrossRefGoogle Scholar
  43. Harlan NP, Kempker RR, Parekh SM, Burd EM, Kuhar DT (2011) Weissella confusa bacteremia in a liver transplant patient with hepatic artery thrombosis. Transpl Infect Dis 13:290–293CrossRefGoogle Scholar
  44. Hsieh F-C, Lee CL, Chai CY, Chen WT, Lu YC, Wu CS (2013) Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metabol 10(35):1–14.  https://doi.org/10.1186/1743-7075-10-35 CrossRefGoogle Scholar
  45. Iacono A, Raso GM, Canani RB, Calignano A, Meli R (2011) Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. J Nutr Biochem 22:699–711.  https://doi.org/10.1016/j.jnutbio.2010.10.002 CrossRefGoogle Scholar
  46. Iizuka K (2017) The role of carbohydrate response element binding protein in intestinal and hepatic fructose metabolism. Nutrients 9:181–193.  https://doi.org/10.3390/nu9020181 CrossRefGoogle Scholar
  47. Jimba S, Nakagami T, Takahashi M, Wakamatsu T, Hirota Y, Iwamoto Y, Wasada T (2005) Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. Diabet Med 22:1141–1145.  https://doi.org/10.1111/j.1464-5491.2005.01582.x CrossRefGoogle Scholar
  48. Johnson-Henry KC, Donato KA, Shen-Tu G, Gordanpour M, Sherman PM (2008) Lactobacillus rhamnosus strain GG prevents enterohemorrhagic Escherichia coli O157: H7-induced changes in epithelial barrier function. Infect Immun 76(4):1340–1348.  https://doi.org/10.1128/IAI.00778-07 CrossRefGoogle Scholar
  49. Kobyliak N, Abenavoli L, Mykhalchyshyn G, Kononenko L, Boccuto L, Kyriienko D, Dynnyk O (2018) A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in NAFLD patients: evidence from a randomized clinical trial. J Gastrointest Liver Dis 27(1):41–49Google Scholar
  50. Kotronen A, Yki-Jaervinen H (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 28(1):27–38.  https://doi.org/10.1161/ATVBAHA.107.147538 CrossRefGoogle Scholar
  51. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbiol ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023.  https://doi.org/10.1038/4441022a CrossRefGoogle Scholar
  52. Libuda L, Alexy U, Sichert-Hellert W, Stehle P, Karaolis-Danckert N, Buyken AE, Kersting M (2008) Pattern of beverage consumption and long-term association with body-weight status in German adolescents-results from the DONALD study. Br J Nutr 99:1370–1379.  https://doi.org/10.1017/S0007114507862362 CrossRefGoogle Scholar
  53. Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH (2010) The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7:251–264.  https://doi.org/10.1038/nrgastro.2010.41 CrossRefGoogle Scholar
  54. Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard CB, Spiegelman BM (2005) Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 120:261–273.  https://doi.org/10.1016/j.cell.2004.11.043 CrossRefGoogle Scholar
  55. Logan BK, Jones AW (2000) Endogenous ethanol ‘auto-brewery syndrome’ as a drunk-driving defence challenge. Med Sci Law 40:206–215.  https://doi.org/10.1177/002580240004000304 CrossRefGoogle Scholar
  56. Loguercio C, De Simone T, Federico A, Terracciano F, Tuccillo C, Di Chicco M, Cartenì M (2002) Gut-liver axis: a new point of attack to treat chronic liver damage? Am J Gastroenterol 97:2144–2146.  https://doi.org/10.1111/j.1572-0241.2002.05942.x CrossRefGoogle Scholar
  57. Ma X, Hua J, Li Z (2008) Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol 49:821–830.  https://doi.org/10.1016/j.jhep.2008.05.025 CrossRefGoogle Scholar
  58. Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R et al (2012) Bifidobacterium longum with fructo-oligosaccharides in patients with non-alcoholic steatohepatitis. Dig Dis Sci 57:545–553.  https://doi.org/10.1007/s10620-011-1887-4 CrossRefGoogle Scholar
  59. Mallappa RH, Rokana N, Duary RK, Panwar H, Batish VK, Grover S (2012) Management of metabolic syndrome through probiotic and prebiotic interventions. Indian J Endocrinol Metab 16(1):20–27.  https://doi.org/10.4103/2230-8210.91178 CrossRefGoogle Scholar
  60. McCarthy J, O’Mahony L, O’Callaghan L, Sheil B, Vaughan EE, Fitzsimons N, Fitzgibbon J, O'Sullivan GC, Kiely B, Collins JK, Shanahan F (2003) Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut 52(7):975–980.  https://doi.org/10.1136/gut.52.7.97510.1136/gut.52.7.975 CrossRefGoogle Scholar
  61. Medina J, Fernández-Salazar LI, García-Buey L, Moreno-Otero R (2004) Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis. Diabetes Care 27:2057–2066.  https://doi.org/10.2337/diacare.27.8.2057 CrossRefGoogle Scholar
  62. Mei L, Tang Y, Li M, Yang P, Liu Z, Yuan J, Zheng P (2015) Co-administration of cholesterol-lowering probiotics and anthraquinone from Cassia obtusifolia L. ameliorate non-alcoholic fatty liver. PLoS One 10(9):e0138078CrossRefGoogle Scholar
  63. Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, Gabrieli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grieco A (2009) Increased intestinal permeability and tight junction alterations in non-alcoholic fatty liver disease. Hepatology 49:1877–1887.  https://doi.org/10.1002/hep.22848 CrossRefGoogle Scholar
  64. Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D (2012) Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes 36:817–825.  https://doi.org/10.1038/ijo.2011.153 CrossRefGoogle Scholar
  65. Musso G, Gambino R, Cassader M (2009) Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res 48:1–26.  https://doi.org/10.1016/j.plipres.2008.08.001 CrossRefGoogle Scholar
  66. Musso G, Gambino R, Cassader M (2010) Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: mechanisms and implications for metabolic disorders. Curr Opin Lipidol 21:76–83.  https://doi.org/10.1097/MOL.0b013e3283347ebb CrossRefGoogle Scholar
  67. Nabavi S, Rafraf M, Somi MH, Homayouni-Rad A, Asghari-Jafarabadi M (2015) The effects of probiotic yogurt on metabolic factors in nonalcoholic fatty liver disease. Sci J Kurdistan Univ Med Sci 20(6):Pe12–Pe25Google Scholar
  68. Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri JM, Moreno LA, Martin-Matillas M, Campoy C, Martí A, Moleres A, Delgado M, Veiga OL, García-Fuentes M, Redondo CG, Sanz Y (2009) Shifts in clostridia, Bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes 33:758–767.  https://doi.org/10.1038/ijo.2008.260 CrossRefGoogle Scholar
  69. Nair S, Cope K, Risby TH, Diehl AM (2001) Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis. Am J Gastroenterol 96:1200–1204.  https://doi.org/10.1111/j.1572-0241.2001.03702.x CrossRefGoogle Scholar
  70. Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, Li J, Cetin S, Ford H, Schreiber A, Hackam DJ (2006) Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 176:3070–3079.  https://doi.org/10.4049/jimmunol.176.5.3070 CrossRefGoogle Scholar
  71. Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis summary of an AASLD single topic conference. Hepatology 37:1202–1219.  https://doi.org/10.1053/jhep.2003.50193 CrossRefGoogle Scholar
  72. Panwar H, Panwar H, Rashmi HM, Batish VK, Grover S (2013) Probiotics as the potential biotherapeutics in the management of type 2 diabetes-prospects and perspectives. Diabetes Metab Res Rev 29(2):103–112.  https://doi.org/10.1002/dmrr.2376 CrossRefGoogle Scholar
  73. Panwar H, Calderwood D, Grant IR, Grover S, Green BD (2014) Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha- and beta-glucosidases suggesting anti-diabetic potential. Eur J Nutr 53(7):1465–1474.  https://doi.org/10.1007/s00394-013-0649-9 CrossRefGoogle Scholar
  74. Panwar H, Calderwood D, Gillespie AL, Wylie AR, Graham SF, Grant IR, Grover S, Green BD (2016a) Identification of lactic acid bacteria strains modulating incretin hormone secretion and gene expression in enteroendocrine cells. J Funct Foods 23:348–358.  https://doi.org/10.1016/j.jff.2016.02.040 CrossRefGoogle Scholar
  75. Panwar H, Calderwood D, Grant IR, Grover S, Green BD (2016b) Lactobacilli possess inhibitory activity against dipeptidyl peptidase-4 (DPP-4). Ann Microbiol 66(1):505–509.  https://doi.org/10.1007/s13213-015-1129-7 CrossRefGoogle Scholar
  76. Pappo I, Bercovier H, Berry EM, Haviv Y, Gallily R, Freund HR (1992) Polymyxin B reduces total parenteral nutrition-associated hepatic steatosis by its antibacterial activity and by blocking deleterious effects of lipopolysaccharide. J Part Enternal Nutr J 16:529–532.  https://doi.org/10.1177/0148607192016006529 CrossRefGoogle Scholar
  77. Reicholda A, Brennera SA, Sprussa A, Förster-Frommea K, Bergheimb I, Bischoff SC (2014) Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J Nutr Biochem 25:118–125.  https://doi.org/10.1016/j.jnutbio.2013.09.011 CrossRefGoogle Scholar
  78. Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80:S147–S171.  https://doi.org/10.1079/BNJ19980108 CrossRefGoogle Scholar
  79. Schrezenmeir J, de Vrese M (2001) Probiotics, prebiotics, and synbiotics approaching a definition. Am J Clin Nutr 73(2 suppl):361S–364SCrossRefGoogle Scholar
  80. Sepideh A, Karim P, Hossein A, Leila R, Hamdollah M, Mohammad EG, Mojtaba S, Mohammad S, Ghader G, Seyed Moayed A (2016) Effects of multistrain probiotic supplementation on glycemic and inflammatory indices in patients with nonalcoholic fatty liver disease: a double-blind randomized clinical trial. J Am Coll Nutr 35(6):500–505CrossRefGoogle Scholar
  81. Solga S, Alkhuraishe AR, Clark JM, Torbenson M, Greenwald A, Diehl AM, Magnuson T (2004) Dietary composition and nonalcoholic fatty liver disease. Dig Dis Sci 49:1578–1583CrossRefGoogle Scholar
  82. Spruss A, Bergheim I (2009) Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. J Nutr Biochem 20:657–662.  https://doi.org/10.1016/j.jnutbio.2009.05.006 CrossRefGoogle Scholar
  83. Tagg JR, Dierksen KP (2003) Bacterial replacement therapy: adapting ‘germ warfare’ to infection prevention. Trends Biotechnol 21:217–223.  https://doi.org/10.1016/S0167-7799(03)00085-4 CrossRefGoogle Scholar
  84. Thakur N, Rokana N, Panwer H (2016) Probiotics: selection criteria, safety and role in health and disease. J Innov Biol 3(1):259–270Google Scholar
  85. Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332:145–159.  https://doi.org/10.1007/s11010-009-0184-4 CrossRefGoogle Scholar
  86. Tuohy KM, Costabile A, Fava F (2009) The gut microbiota in obesity and metabolic disease -a novel therapeutic target. Nutr Ther Metabol 27:113–133Google Scholar
  87. Vajro P, Mandato C, Licenziati MR, Franzese A, Vitale DF, Lenta S, Caropreso M, Vallone G, Meli R (2011) Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr 52:740–743.  https://doi.org/10.1097/MPG.0b013e31821f9b85 CrossRefGoogle Scholar
  88. Velayudham A, Dolganiuc A, Ellis M, Petrasek J, Kodys K, Mandrekar P, Szabo G (2009) VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology 49:989–997.  https://doi.org/10.1002/hep.22711 CrossRefGoogle Scholar
  89. Volynets V, Küper MA, Strahl S, Maier IB, Spruss A, Wagnerberger S, Königsrainer A, Bischoff SC, Bergheim I (2012) Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci 57:1932–1941CrossRefGoogle Scholar
  90. Wagnerberger S, Spruss A, Kanuri G, Stahl C, Schröder M, Vetter W, Bischoff SC, Bergheim I (2013) Lactobacillus casei Shirota protects from fructose-induced liver steatosis: a mouse model. J Nutr Biochem 24:531–538.  https://doi.org/10.1016/j.jnutbio.2012.01.014 CrossRefGoogle Scholar
  91. Wang X, Quinn PJ (2010) Lipopolysaccharide: biosynthetic pathway and structure modification. Prog Lipid Res 49(2):97–107.  https://doi.org/10.1016/j.plipres.2009.06.002 CrossRefGoogle Scholar
  92. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, van-Hylckama Vlieg JE, Strissel K, Zhao L, Obin M, Shen J (2015) Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. The ISME J 9:1–15 , 1038: 1–15.  https://doi.org/10.1038/ismej.2014.99 CrossRefGoogle Scholar
  93. Wong V, Tse C-H, Yuk Lam TT, Wong GL, Chim AL, Wing Chu WC, Yeung DK, Law PT-W, Kwan H-S, Yu J, Sung J-J, Chan HL (2013) Molecular characterization of fecal microbiota in patients with nonalcoholic steatohepatitis-a longitudinal. PLoS One 8:e62885.  https://doi.org/10.1371/journal.pone.0062885 CrossRefGoogle Scholar
  94. Wu WC, Zhao W, Li S (2008) Small intestinal bacteria overgrowth decreases small intestinal motility in the NASH rats. World J Gastroenterol 14(2):313–317.  https://doi.org/10.3748/wjg.14.313 CrossRefGoogle Scholar
  95. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short chain fatty acids stimulate leptin production in adipocytes through the G protein coupled receptor GPR 41. Proc Natl Acad Sci U S A 10:1045–1050.  https://doi.org/10.1073/pnas.2637002100 CrossRefGoogle Scholar
  96. Xu R, Wan Y-P, Fang Q-Y, Lu W, Cai W (2012) Supplementation with probiotics modifies gut flora and attenuates liver fat accumulation in rat nonalcoholic fatty liver disease model. J Clin Biochem Nutr 50:72–77.  https://doi.org/10.3164/jcbn.11-38 CrossRefGoogle Scholar
  97. Xue L, He J, Gao N, Lu X, Li M, Wu X, Liu Z, Jin Y, Liu J, Xu J, Geng Y (2017) Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 7:45176CrossRefGoogle Scholar
  98. Ye H, Li Q, Zhang Z, Sun M, Zhao C, Zhang T (2017) Effect of a novel potential probiotic Lactobacillus paracasei Jlus66 isolated from fermented milk on nonalcoholic fatty liver in rats. Food Funct 8(12):4539–4546CrossRefGoogle Scholar
  99. Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G, Chen Y, Zhao L (2010) Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 4(2):232–241.  https://doi.org/10.1038/ismej.2009.112 CrossRefGoogle Scholar
  100. Zihler A (2010) In vitro assessment of bacteriocinogenic probiotics for prevention and treatment of Salmonella in children using novel in vitro continuous colonic fermentation and cellular models. Dissertation ETH Zurich 19059Google Scholar
  101. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA (2007) Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol 9(3):804–816CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fouad M. F. Elshaghabee
    • 1
    Email author
  • Namita Rokana
    • 2
  • Harsh Panwar
    • 2
  • Knut J. Heller
    • 3
  • Jürgen Schrezenmeir
    • 4
  1. 1.Department of Dairy Science, Faculty of AgricultureCairo UniversityGizaEgypt
  2. 2.Department of Dairy Microbiology, College of Dairy Science and TechnologyGuru Angad Dev Veterinary and Animal Sciences University (GADVASU)LudhianaIndia
  3. 3.Department of Microbiology and BiotechnologyMax Rubner-Institute (Federal Research Institute of Nutrition and Food)KielGermany
  4. 4.Medical ClinicJohannes Gutenberg UniversityMainzGermany

Personalised recommendations