Advertisement

Microbes, Their Metabolites, and Effector Molecules: A Pharmacological Perspective for Host-Microbiota Interaction

  • Bharat Bhushan
  • Brij Pal Singh
  • Mamta Kumari
  • Vijendra Mishra
  • Kamna Saini
  • Devender Singh
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 28)

Abstract

The human microbiota and probiotics are key players to modulate human health. Microbial cells, as a whole, have either been known to physically react with intestinal surfaces or to produce some enzymes and metabolites to impart a positive or negative impact on human health. Moreover, their specialized metabolites have a profound role in the generation of multivariate clinical responses in humans, with an influence on hosts’ metabolism and immunity. Gut microbiota and probiotics are known for their influence on hosts’ physiology.

We review clinical trials based on microbiota composition to correlate health status of humans with their gut microbiota, along with few examples of effects of microbial perturbation on health and disease. The chapter also explains the roles of metabolites of human microbiota, in addition to their impacts on hosts’ physiology. Besides the positive influences of microbes on humans, negative effects of the microbial metabolism, such as inactivating the pharmacological activity of drugs are also discussed, Selected examples for the roles of gut microbiota in human metabolism, using their enzymatic repertoire for degradation of otherwise indigestible dietary components, are reviewed. We present the mode of action of newly identified effector molecules, polysaccharides, outer membrane proteins, pili, muropeptides, and CpG-rich DNA, both for human microbiota and probiotics (Lactobacillus and Bifidobacterium strains). Besides effector molecules, clinical outcomes of probiotics (as whole live cells) are also discussed. Moreover, health-improving probiotic metabolites, including vitamins, bacteriocins, and bioactive peptides, are reviewed. In the end, a new perspective of developing a microbial global positioning system (mGPS) for segregation of human population on the basis of their microbiota is discussed.

Keywords

Microbiota Probiotics Metabolites Effector molecules Pharmacology Inflammatory bowel disease Vitamin B12 Physiological state Clinical Drug metabolism 

References

  1. Aggarwal S, Upadhyay A, Shah D, Teotia N, Agarwal A, Jaiswal V (2014) Lactobacillus GG for treatment of acute childhood diarrhea: an open labelled, randomized controlled trial. Indian J Med Res 139(3):379–385Google Scholar
  2. Agustina R, Bovee-Oudenhoven IM, Lukito W, Fahmida U, van de Rest O, Zimmermann MB, Firmansyah A, Wulanti R, Albers R, van den Heuvel EG, Kok FJ (2013) Probiotics Lactobacillus reuteri DSM 17938 and Lactobacillus casei CRL 431 modestly increase growth, but not iron and zinc status, among Indonesian children aged 1–6 years. J Nutr 143(7):1184–1193.  https://doi.org/10.3945/jn.112.166397 CrossRefGoogle Scholar
  3. Anhê FF, Marette A (2017) A microbial protein that alleviates metabolic syndrome. Nat Med 23:11–12.  https://doi.org/10.1038/nm.4261 CrossRefGoogle Scholar
  4. Arboleya S, Martinez-Camblor P, Solís G, Suárez M, Fernández N, de los Reyes-Gavilán CG, Gueimonde M (2017) Intestinal microbiota and weight-gain in preterm neonates. Front Microbiol 8:183.  https://doi.org/10.3389/fmicb.2017.00183 CrossRefGoogle Scholar
  5. Arena MP, Russo P, Capozzi V, López P (2014) Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Appl Microbiol Biotechnol 98:7569–7581.  https://doi.org/10.1007/s00253-014-5837-x CrossRefGoogle Scholar
  6. Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, Britton HM, Lefebvre DL, Subbarao P (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7(307):307ra152.  https://doi.org/10.1126/scitranslmed.aab2271 CrossRefGoogle Scholar
  7. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M (2011) Enterotypes of the human gut microbiome. Nature 473:174–180.  https://doi.org/10.1038/nature09944 CrossRefGoogle Scholar
  8. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341.  https://doi.org/10.1126/science.1198469 CrossRefGoogle Scholar
  9. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S (2013) T reg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236.  https://doi.org/10.1038/nature12331 CrossRefGoogle Scholar
  10. Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavones daidzein: exploring the relevance to human health. Exp Biol Med 230(3):155–170CrossRefGoogle Scholar
  11. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167.  https://doi.org/10.1046/j.1432-1033.2002.03239.x CrossRefGoogle Scholar
  12. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101(44):1507–1519.  https://doi.org/10.1017/S0007114513003875 CrossRefGoogle Scholar
  13. Balmer ML, Schürch CM, Saito Y, Geuking MB, Li H, Cuenca M, Kovtonyuk LV, McCoy KD, Hapfelmeier S, Ochsenbein AF, Manz MG (2014) Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol 193(10):5273–5283.  https://doi.org/10.4049/jimmunol.1400762 CrossRefGoogle Scholar
  14. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26.  https://doi.org/10.1038/ja.2005.1 CrossRefGoogle Scholar
  15. Bhushan B, Tomar SK, Mandal S (2016) Phenotypic and genotypic screening of human-originated lactobacilli for vitamin B12 production potential: process validation by micro-assay and UFLC. Appl Microbiol Biotechnol 100(15):6791–6803.  https://doi.org/10.1007/s00253-016-7639-9 CrossRefGoogle Scholar
  16. Bhushan B, Tomar SK, Chauhan A (2017) Techno-functional differentiation of two vitamin B 12 producing Lactobacillus plantarum strains: an elucidation for diverse future use. Appl Microbiol Biotechnol 101(2):697–709.  https://doi.org/10.1007/s00253-016-7903-z CrossRefGoogle Scholar
  17. Booijink CC, El Aidy S, Rajilić Stojanović M, Heilig HG, Troost FJ, Smidt H, Kleerebezem M, De Vos WM, Zoetendal EG (2010) High temporal and inter individual variation detected in the human ileal microbiota. Environ Microbiol 12(12):3213–3227.  https://doi.org/10.1111/j.1462-2920.2010.02294.x CrossRefGoogle Scholar
  18. Buddington RK, Sangild PT (2011) Development of the mammalian gastrointestinal tract, the resident microbiota, and the role of diet in early life. J Anim Sci 89:1506–1519CrossRefGoogle Scholar
  19. Burgess C, O’Connell-Motherway M, Sybesma W, Hugenholtz J, Van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70(10):5769–5777.  https://doi.org/10.1128/AEM.70.10.5769-5777.2004 CrossRefGoogle Scholar
  20. Caminero A, Galipeau HJ, McCarville JL, Johnston CW, Bernier SP, Russell AK, Jury J, Herran AR, Casqueiro J, Tye-Din JA, Surette MG (2016) Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151(4):670–683.  https://doi.org/10.1053/j.gastro.2016.06.041 CrossRefGoogle Scholar
  21. Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17(12):1519–1528.  https://doi.org/10.3748/wjg.v17.i12.1519 CrossRefGoogle Scholar
  22. Cani PD, de Vos WM (2017) Next-generation beneficial microbes: the case of akkermansia muciniphila. Front Microbiol 8:1765.  https://doi.org/10.3389/fmicb.2017.01765 CrossRefGoogle Scholar
  23. Cao LT, Wu JQ, Xie F, Hu SH, Mo Y (2007) Efficacy of nisin in treatment of clinical mastitis in lactating dairy cows. J Dairy Sci 90(8):3980–3985.  https://doi.org/10.3168/jds.2007-0153 CrossRefGoogle Scholar
  24. Cerf-Bensussan N, Gaboriau-Routhiau V (2010) The immune system and the gut microbiota: friends or foes? Nat Rev Immunol 10(10):735–744.  https://doi.org/10.1038/nri2850 CrossRefGoogle Scholar
  25. Chamlagain B, Edelmann M, Kariluoto S, Ollilainen V, Piironen V (2015) Ultra-high performance liquid chromatographic and mass spectrometric analysis of active vitamin B12 in cells of Propionibacterium and fermented cereal matrices. Food Chem 166:630–638.  https://doi.org/10.1016/j.foodchem.2014.06.068 CrossRefGoogle Scholar
  26. Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111(6):2247–2252.  https://doi.org/10.1073/pnas.1322269111 CrossRefGoogle Scholar
  27. Chang HY, Chen JH, Chang JH, Lin HC, Lin CY, Peng CC (2017) Multiple strains probiotics appear to be the most effective probiotics in the prevention of necrotizing enterocolitis and mortality: an updated meta-analysis. PLoS One 12(2):e0171579.  https://doi.org/10.1371/journal.pone.0171579 CrossRefGoogle Scholar
  28. Chassaing B, Darfeuille-Michaud A (2011) The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140:1720–1728.  https://doi.org/10.1053/j.gastro.2011.01.054 CrossRefGoogle Scholar
  29. Christl SU, Scheppach W (1997) Metabolic consequences of total colectomy. Scand J Gastroenterol 32:20–24.  https://doi.org/10.1080/00365521.1997.11720712 CrossRefGoogle Scholar
  30. Claes IJ, Lebeer S, Shen C, Verhoeven TL, Dilissen E, De Hertogh G, Bullens DM, Ceuppens JL, Van Assche G, Vermeire S, Rutgeerts P (2010) Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin Exp Immunol 162(2):306–314.  https://doi.org/10.1111/j.1365-2249.2010.04228.x CrossRefGoogle Scholar
  31. Claes IJ, Segers ME, Verhoeven TL, Dusselier M, Sels BF, De Keersmaecker SC, Vanderleyden J, Lebeer S (2012) Lipoteichoic acid is an important microbe-associated molecular pattern of Lactobacillus rhamnosus GG. Microb Cell Factories 11(1):161.  https://doi.org/10.1186/1475-2859-11-161 CrossRefGoogle Scholar
  32. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16(2):228–231.  https://doi.org/10.1038/nm.2087 CrossRefGoogle Scholar
  33. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O’Reilly M, Jeffery IB, Wood-Martin R, Kerins DM (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut.  https://doi.org/10.1136/gutjnl-2013-306541 CrossRefGoogle Scholar
  34. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270.  https://doi.org/10.1016/j.cell.2012.01.035 CrossRefGoogle Scholar
  35. Cooperman JM, Lopez R (1991) Riboflavin. In: Machlin LJ (ed) Handbook of vitamins. Marcel Dekker, New YorkGoogle Scholar
  36. Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104(18):7617–7621.  https://doi.org/10.1073/pnas.0700440104 CrossRefGoogle Scholar
  37. Costa DJ, Marteau P, Amouyal M, Poulsen LK, Hamelmann E, Cazaubiel M, Housez B, Leuillet S, Stavnsbjerg M, Molimard P, Courau S (2014) Efficacy and safety of the probiotic Lactobacillus paracasei LP-33 in allergic rhinitis: a double-blind, randomized, placebo-controlled trial (GA2LEN study). Eur J Clin Nutr 68(5):602–607.  https://doi.org/10.1038/ejcn.2014.13 CrossRefGoogle Scholar
  38. Culpepper T, Christman MC, Nieves C Jr, Specht GJ, Rowe CC, Spaiser SJ, Ford AL, Dahl WJ, Girard SA, Langkamp-Henken B (2016) Bifidobacterium bifidum R0071 decreases stress-associated diarrhoea-related symptoms and self-reported stress: a secondary analysis of a randomised trial. Benefic Microbes 7(3):327–336.  https://doi.org/10.3920/BM2015.0156 CrossRefGoogle Scholar
  39. Dahiya DK, Puniya AK (2015) Evaluation of survival, free radical scavenging and human enterocyte adherence potential of lactobacilli with anti-obesity and anti-inflammatory cla isomer-producing attributes. J Food Process Preserv 39:2866–2877.  https://doi.org/10.1111/jfpp.12538 CrossRefGoogle Scholar
  40. Dahiya DK, Puniya AK (2017a) Isolation, molecular characterization and screening of indigenous lactobacilli for their abilities to produce bioactive conjugated linoleic acid (CLA). J Food Sci Technol 54(3):792–801.  https://doi.org/10.1007/s13197-017-2523-x CrossRefGoogle Scholar
  41. Dahiya DK, Puniya AK (2017b) Optimisation of fermentation variables for conjugated linoleic acid bioconversion by Lactobacillus fermentum DDHI27 in modified skim milk. Int J Dairy Technol 71:46–55.  https://doi.org/10.1111/1471-0307.12375 CrossRefGoogle Scholar
  42. Dahiya DK, Renuka, Puniya M, Shandilya UK, Dhewa T, Kumar N, Kumar S, Puniya AK, Shukla P (2017) Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Front Microbiol 8:563.  https://doi.org/10.3389/fmicb.2017.00563 CrossRefGoogle Scholar
  43. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CP, Flament C, Lepage P, Roberti MP, Routy B (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45(4):931–943.  https://doi.org/10.1016/j.immuni.2016.09.009 CrossRefGoogle Scholar
  44. Danielsson H, Gustafsson B (1959) On serum-cholesterol levels and neutral fecal sterols in germ-free rats. Bile acids and steroids 59. Arch Biochem Biophys 83(2):482–485.  https://doi.org/10.1016/0003-9861(59)90056-6 CrossRefGoogle Scholar
  45. de Angelis M, Bottacini F, Fosso B, Kelleher P, Calasso M, Di Cagno R, Ventura M, Picardi E, van Sinderen D, Gobbetti M (2014) Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the genus Lactobacillus. PLoS One 9(9):e107232.  https://doi.org/10.1371/journal.pone.0107232 CrossRefGoogle Scholar
  46. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1):84–96.  https://doi.org/10.1016/j.cell.2013.12.016 CrossRefGoogle Scholar
  47. del Valle MJ, Laiño JE, de Giori GS, LeBlanc JG (2014) Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Res Int 62:1015–1019.  https://doi.org/10.1016/j.foodres.2014.05.029 CrossRefGoogle Scholar
  48. del Valle MJ, Laiño JE, de LeBlanc AD, de Giori GS, LeBlanc JG (2016) Soyamilk fermented with riboflavin-producing Lactobacillus plantarum CRL 2130 reverts and prevents ariboflavinosis in murine models. Br J Nutr 116(7):1229–1235.  https://doi.org/10.1017/S0007114516003378 CrossRefGoogle Scholar
  49. den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, Müller M, Groen AK, Hooiveld GJ, Bakker BM, Reijngoud DJ (2013) Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol 305(12):900–910.  https://doi.org/10.1152/ajpgi.00265.2013 CrossRefGoogle Scholar
  50. Dennis-Wall JC, Culpepper T, Nieves C, Rowe CC, Burns AM, Rusch CT, Federico A, Ukhanova M, Waugh S, Mai V, Christman MC (2017) Probiotics (Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial. Am J Clin Nutr 105(3):758–767.  https://doi.org/10.3945/ajcn.116.140012 CrossRefGoogle Scholar
  51. Depeint F, Tzortzis G, Vulevic J, I’Anson K, Gibson GR (2008) Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am J Clin Nutr 87(3):785–791.  https://doi.org/10.1093/ajcn/87.3.785 CrossRefGoogle Scholar
  52. Deptula P, Kylli P, Chamlagain B, Holm L, Kostiainen R, Piironen V, Savijoki K, Varmanen P (2015) BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B12 by Propionibacterium freudenreichii. Microb Cell Factories 14:186.  https://doi.org/10.1186/s12934-015-0363-9 CrossRefGoogle Scholar
  53. Deptula P, Chamlagain B, Edelmann M, Sangsuwan P, Nyman TA, Savijoki K, Piironen V, Varmanen P (2017) Food-like growth conditions support production of active vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the lower ligand base, or cobalt supplementation. Front Microbiol 8:368.  https://doi.org/10.3389/fmicb.2017.00368 CrossRefGoogle Scholar
  54. Devlin AS, Marcobal A, Dodd D, Nayfach S, Plummer N, Meyer T, Pollard KS, Sonnenburg JL, Fischbach MA (2016) Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe 20(6):709–715.  https://doi.org/10.1016/j.chom.2016.10.021 CrossRefGoogle Scholar
  55. Dicks LMT, Geldenhuys J, Mikkelsen LS, Brandsborg E, Marcotte H (2017) Our gut microbiota: a long walk to homeostasis. Benefic Microbes 9(1):3–20.  https://doi.org/10.3920/BM2017.0066 CrossRefGoogle Scholar
  56. Donia MS, Fischbach MA (2015) Small molecules from the human microbiota. Science 349(6246):1254766.  https://doi.org/10.1126/science.1254766 CrossRefGoogle Scholar
  57. Donohoe DR, Holley D, Collins LB, Montgomery SA, Whitmore AC, Hillhouse A, Curry KP, Renner SW, Greenwalt A, Ryan EP, Godfrey V (2014) A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota-and butyrate-dependent manner. Cancer Discov 4(12):1387–1397.  https://doi.org/10.1158/2159-8290.CD-14-0501 CrossRefGoogle Scholar
  58. Dorrestein PC, Mazmanian SK, Knight R (2014) Finding the missing links among metabolites, microbes, and the host. Immunity 40(6):824–832.  https://doi.org/10.1016/j.immuni.2014.05.015 CrossRefGoogle Scholar
  59. Douillard FP, De Vos WM (2014) Functional genomics of lactic acid bacteria: from food to health. Microb Cell Factories 13(1):S8.  https://doi.org/10.1186/1475-2859-13-S1-S8 CrossRefGoogle Scholar
  60. Douillard FP, Ribbera A, Kant R, Pietilä TE, Järvinen HM, Messing M, Randazzo CL, Paulin L, Laine P, Ritari J, Caggia C (2013) Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet 9(8):e1003683.  https://doi.org/10.1371/journal.pgen.1003683 CrossRefGoogle Scholar
  61. Drissi F, Raoult D, Merhej V (2017) Metabolic role of lactobacilli in weight modification in humans and animals. Microb Pathog 106:182–194.  https://doi.org/10.1016/j.micpath.2016.03.006 CrossRefGoogle Scholar
  62. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73(4):1073–1078.  https://doi.org/10.1128/AEM.02340-06 CrossRefGoogle Scholar
  63. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638.  https://doi.org/10.1126/science.1110591 CrossRefGoogle Scholar
  64. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11(7):497–504.  https://doi.org/10.1038/nrmicro3050 CrossRefGoogle Scholar
  65. Erny D, de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977.  https://doi.org/10.1038/nn.4030 CrossRefGoogle Scholar
  66. Evans M, Salewski RP, Christman MC, Girard SA, Tompkins TA (2016) Effectiveness of Lactobacillus helveticus and Lactobacillus rhamnosus for the management of antibiotic associated diarrhoea in healthy adults: a randomised, double-blind, placebo-controlled trial. Br J Nutr 116(1):94–103.  https://doi.org/10.1017/S0007114516001665 CrossRefGoogle Scholar
  67. Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R (2017) Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. Pediatr Gastroenterol Nutr 64(3):413–417.  https://doi.org/10.1097/MPG.0000000000001422 CrossRefGoogle Scholar
  68. Fan WT, Ding C, Xu NN, Zong S, Ma P, Gu B (2017) Close association between intestinal microbiota and irritable bowel syndrome. Eur J Clin Microbiol Infect 36(12):2303–2317.  https://doi.org/10.1007/s10096-017-3060-2 CrossRefGoogle Scholar
  69. Farr CD, Burd C, Tabet MR, Wang X, Welsh WJ, Ball WJ (2002) Three-dimensional quantitative structure activity relationship study of the inhibition of Na+, K+-ATPase by cardiotonic steroids using comparative molecular field analysis. Biochemistry 41(4):1137–1148.  https://doi.org/10.1021/bi011511g CrossRefGoogle Scholar
  70. Feizizadeh S, Salehi-Abargouei A, Akbari V (2013) Efficacy and safety of Saccharomyces boulardii for acute diarrhea. Pediatrics:peds3950.  https://doi.org/10.1542/peds.2013-3950 CrossRefGoogle Scholar
  71. Fernandez EM, Valenti V, Rockel C, Hermann C, Pot B, Boneca IG, Grangette C (2011) Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut.  https://doi.org/10.1136/gut.2010.232918 CrossRefGoogle Scholar
  72. Fischbach MA, Sonnenburg JL (2011) Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10(4):336–347.  https://doi.org/10.1016/j.chom.2011.10.002 CrossRefGoogle Scholar
  73. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6(2):121–131.  https://doi.org/10.1038/nrmicro1817 CrossRefGoogle Scholar
  74. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266.  https://doi.org/10.1038/nature15766 CrossRefGoogle Scholar
  75. Fox MJ, Ahuja KD, Robertson IK, Ball MJ, Eri RD (2015) Can probiotic yogurt prevent diarrhoea in children on antibiotics? A double-blind, randomised, placebo-controlled study. BMJ Open 5(1):e006474.  https://doi.org/10.1136/bmjopen-2014-006474 CrossRefGoogle Scholar
  76. Frank P, Ottoboni MA (2011) The dose makes the poison: a plain-language guide to toxicology. Wiley, HobokenCrossRefGoogle Scholar
  77. Ganesh BP, Hall A, Ayyaswamy S, Nelson JW, Fultz R, Major A, Haag A, Esparza M, Lugo M, Venable S, Whary M (2017) Diacylglycerol kinase synthesized by commensal Lactobacillus reuteri diminishes protein kinase C phosphorylation and histamine-mediated signaling in the mammalian intestinal epithelium. Mucosal Immunol.  https://doi.org/10.1038/mi.2017.58 CrossRefGoogle Scholar
  78. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517.  https://doi.org/10.2337/db08-1637 CrossRefGoogle Scholar
  79. García-Tejedor A, Sánchez-Rivera L, Castelló-Ruiz M, Recio I, Salom JB, Manzanares P (2014) Novel antihypertensive lactoferrin-derived peptides produced by Kluyveromyces marxianus: gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition. J Agric Food Chem 62(7):1609–1616.  https://doi.org/10.1021/jf4053868 CrossRefGoogle Scholar
  80. Gerritsen J, Smidt H, Rijkers GT, Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209.  https://doi.org/10.1007/s12263-011-0229-7 CrossRefGoogle Scholar
  81. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, Morgan XC (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15(3):382–392.  https://doi.org/10.1016/j.chom.2014.02.005 CrossRefGoogle Scholar
  82. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R (2016) Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535(7610):94–103.  https://doi.org/10.1038/nature18850 CrossRefGoogle Scholar
  83. Golomb BL, Hirao LA, Dandekar S, Marco ML (2016) Gene expression of Lactobacillus plantarum and the commensal microbiota in the ileum of healthy and early SIV-infected rhesus macaques. Sci Rep 6:24723.  https://doi.org/10.1038/srep24723 CrossRefGoogle Scholar
  84. Goodman GL (2011) Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New YorkGoogle Scholar
  85. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799.  https://doi.org/10.1016/j.cell.2014.09.053 CrossRefGoogle Scholar
  86. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519.  https://doi.org/10.1016/S0140-6736(03)12489-0 CrossRefGoogle Scholar
  87. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F (2010) From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 23(2):366–384.  https://doi.org/10.1017/S0954422410000247 CrossRefGoogle Scholar
  88. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341(6143):295–298.  https://doi.org/10.1126/science.1235872 CrossRefGoogle Scholar
  89. Hajfathalian M, Ghelichi S, García-Moreno PJ, Moltke Sørensen AD, Jacobsen C (2017) Peptides: production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr:1–33.  https://doi.org/10.1080/10408398.2017.1352564
  90. Hansen J, Gulati A, Sartor RB (2010) The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol 26(6):564–571.  https://doi.org/10.1097/MOG.0b013e32833f1195 CrossRefGoogle Scholar
  91. Harmsen HJ, Wildeboer–Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2002) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30(1):61–67CrossRefGoogle Scholar
  92. Hayes M, Ross RP, Fitzgerald GF, Hill C, Stanton C (2006) Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Appl Environ Microbiol 72(3):2260–2264.  https://doi.org/10.1128/AEM.72.3.2260-2264.2006 CrossRefGoogle Scholar
  93. Haiser HJ, Turnbaugh PJ (2013) Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 69(1):21–31.CrossRefGoogle Scholar
  94. Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6(1):43–45CrossRefGoogle Scholar
  95. Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, Kambayashi T, LaRosa DF, Renner ED, Orange JS, Bushman FD (2012) Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18(4):538–546.  https://doi.org/10.1038/nm.2657 CrossRefGoogle Scholar
  96. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514.  https://doi.org/10.1038/nrgastro.2014.66 CrossRefGoogle Scholar
  97. Honda K, Littman DR (2016) The microbiota in adaptive immune homeostasis and disease. Nature 535(7610):75–84.  https://doi.org/10.1038/nature18848 CrossRefGoogle Scholar
  98. Hopkins MJ, Macfarlane GT (2002) Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51(5):448–454.  https://doi.org/10.1099/0022-1317-51-5-448 CrossRefGoogle Scholar
  99. Hugenschmidt S, Schwenninger SM, Lacroix C (2011) Concurrent high production of natural folate and vitamin B12 using a co-culture process with Lactobacillus plantarum SM39 and Propionibacterium freudenreichii DF13. Process Biochem 46(5):1063–1070.  https://doi.org/10.1016/j.procbio.2011.01.021 CrossRefGoogle Scholar
  100. Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486:215–221.  https://doi.org/10.1038/nature11209 CrossRefGoogle Scholar
  101. Humblot C, Murkovic M, Rigottier-Gois L, Bensaada M, Bouclet A, Andrieux C, Anba J, Rabot S (2007) β-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo [4, 5-f] quinoline in rats. Carcinogenesis 28(11):2419–2425.  https://doi.org/10.1093/carcin/bgm170 CrossRefGoogle Scholar
  102. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970.  https://doi.org/10.1126/science.1240527 CrossRefGoogle Scholar
  103. Iliev ID, Tohno M, Kurosaki D, Shimosato T, He F, Hosoda M, Saito T, Kitazawa H (2008) Immunostimulatory oligodeoxynucleotide containing TTTCGTTT motif from lactobacillus rhamnosus GG DNA potentially suppresses ova-specific ige production in mice. Scand J Immunol 67(4):370–376.  https://doi.org/10.1111/j.1365-3083.2008.02080.x CrossRefGoogle Scholar
  104. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academies Press (US), Washington, DCGoogle Scholar
  105. Jacobs SE, Tobin JM, Opie GF, Donath S, Tabrizi SN, Pirotta M, Morley CJ, Garland SM (2013) Probiotic effects on late-onset sepsis in very preterm infants: a randomized controlled trial. Pediatrics 132(6):1055–1062.  https://doi.org/10.1542/peds.2013-1339 CrossRefGoogle Scholar
  106. Jeffery IB, O’Toole PW, Öhman L, Claesson MJ, Deane J, Quigley EM, Simrén M (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7):997–1006.  https://doi.org/10.1136/gutjnl-2012-302847 CrossRefGoogle Scholar
  107. Jemil I, Jridi M, Nasri R, Ktari N, Ben Slama-Ben Salem R, Mehiri M, Hajji M, Nasri M (2014) Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochem 49:963–972.  https://doi.org/10.1016/j.procbio.2014.03.004 CrossRefGoogle Scholar
  108. Jia W, Li H, Zhao L, Nicholson JK (2008) Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 7(2):123–129.  https://doi.org/10.1038/nrd2505 CrossRefGoogle Scholar
  109. Joice R, Yasuda K, Shafquat A, Morgan XC, Huttenhower C (2014) Determining microbial products and identifying molecular targets in the human microbiome. Cell Metab 20(5):731–741.  https://doi.org/10.1016/j.cmet.2014.10.003 CrossRefGoogle Scholar
  110. Kang D, Shi B, Erfe MC, Craft N, Li H (2015) Vitamin B12 modulates the transcriptome of the skin microbiota in acne pathogenesis. Sci Transl Med 7(293):293ra103.  https://doi.org/10.1126/scitranslmed.aab2009 CrossRefGoogle Scholar
  111. Karimi K, Inman MD, Bienenstock J, Forsythe P (2009) Lactobacillus reuteri induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med 179(3):186–193.  https://doi.org/10.1164/rccm.200806-951OC CrossRefGoogle Scholar
  112. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103.  https://doi.org/10.1038/nature12198 CrossRefGoogle Scholar
  113. Kato K, Mizuno S, Umesaki Y, Ishii Y, Sugitani M, Imaoka A, Otsuka M, Hasunuma O, Kurihara R, Iwasaki A, Arakawa Y (2004) Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther 20(10):1133–1141.  https://doi.org/10.1111/j.1365-2036.2004.02268.x CrossRefGoogle Scholar
  114. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 7(4):1829.  https://doi.org/10.1038/ncomms2852 CrossRefGoogle Scholar
  115. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585.  https://doi.org/10.1038/nm.3145 CrossRefGoogle Scholar
  116. Koppel N, Rekdal VM, Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science 356(6344):eaag2770.  https://doi.org/10.1126/science.aag2770 CrossRefGoogle Scholar
  117. Kotani Y, Shinkai S, Okamatsu H, Toba M, Ogawa K, Yoshida H, Fukaya T, Fujiwara Y, Chaves PH, Kakumoto K, Kohda N (2010) Oral intake of Lactobacillus pentosus strain b240 accelerates salivary immunoglobulin A secretion in the elderly: a randomized, placebo-controlled, double-blind trial. Immun Ageing 7:11.  https://doi.org/10.1186/1742-4933-7-11 CrossRefGoogle Scholar
  118. Krauss RM, Zhu H, Kaddurah-Daouk R (2013) Pharmacometabolomics of statin response. Clin Pharmacol Ther 94(5):562–565.  https://doi.org/10.1038/clpt.2013.164 CrossRefGoogle Scholar
  119. Krishnan R, Wilkinson I, Joyce L, Rofe AM, Bais R, Conyers RA, Edwards JB (1980) The effect of dietary xylitol on the ability of rat caecal flora to metabolise xylitol. Immunol Cell Biol 58(6):639–652.  https://doi.org/10.1038/icb.1980.66 CrossRefGoogle Scholar
  120. Krishnan S, Alden N, Lee K (2015) Pathways and functions of gut microbiota metabolism impacting host physiology. Curr Opin Biotechnol 36:137–145.  https://doi.org/10.1016/j.copbio.2015.08.015 CrossRefGoogle Scholar
  121. Kruse HP, Kleessen B, Blaut M (1999) Effects of inulin on faecal bifidobacteria in human subjects. Br J Nutr 82(5):375–382.  https://doi.org/10.1017/S0007114599001622 CrossRefGoogle Scholar
  122. Kumar N, Kumari V, Ram C, Thakur K, Tomar SK (2018) Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Appl Microbiol Biotechnol 19:1–7.  https://doi.org/10.1007/s00253-018-8743-9 CrossRefGoogle Scholar
  123. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82(20):6955–6959CrossRefGoogle Scholar
  124. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546.  https://doi.org/10.1038/nature12506 CrossRefGoogle Scholar
  125. Lebeer S, Bron PA, Marco ML, Van Pijkeren JP, Motherway MO, Hill C, Pot B, Roos S, Klaenhammer T (2018) Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol 49:217–223.  https://doi.org/10.1016/j.copbio.2017.10.007 CrossRefGoogle Scholar
  126. LeBlanc JG, Burgess C, Sesma F, de Giori GS, van Sinderen D (2005) Lactococcus lactis is capable of improving the riboflavin status in deficient rats. Br J Nutr 94(2):262–267.  https://doi.org/10.1079/BJN20051473 CrossRefGoogle Scholar
  127. LeBlanc JG, Rutten G, Bruinenberg P, Sesma F, de Giori GS, Smid EJ (2006) A novel dairy product fermented with Propionibacterium freudenreichii improves the riboflavin status of deficient rats. Nutrition 22(6):645–651.  https://doi.org/10.1016/j.nut.2006.01.002 CrossRefGoogle Scholar
  128. LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, Van Sinderen D, Taranto MP, de Valdez G, de Giori GS, Sesma F (2011) B-Group vitamin production by lactic acid bacteria–current knowledge and potential applications. J Appl Microbiol 111(6):1297–1309.  https://doi.org/10.1111/j.1365-2672.2011.05157.x CrossRefGoogle Scholar
  129. LeBlanc JG, Milani C, de Giori GS, Sesma F, Van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168.  https://doi.org/10.1016/j.copbio.2012.08.005 CrossRefGoogle Scholar
  130. LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Factories 16:79.  https://doi.org/10.1186/s12934-017-0691-z CrossRefGoogle Scholar
  131. Lee H, Ko G (2014) Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 80(19):5935–5943.  https://doi.org/10.1128/AEM.01357-14 CrossRefGoogle Scholar
  132. Lemes AC, Sala L, Ores JDC, Braga ARC, Egea MB, Fernandes KF (2016) A review of the latest advances in encrypted bioactive peptides from protein-rich waste. Int J Mol Sci 17:950.  https://doi.org/10.3390/ijms17060950 CrossRefGoogle Scholar
  133. Lemon KP, Armitage GC, Relman DA, Fischbach MA (2012) Microbiota-targeted therapies: an ecological perspective. Sci Transl Med 4(137):137rv5.  https://doi.org/10.1126/scitranslmed.3004183 CrossRefGoogle Scholar
  134. Leonel AJ, Alvarez-Leite JI (2012) Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care 15(5):474–479.  https://doi.org/10.1097/MCO.0b013e32835665fa CrossRefGoogle Scholar
  135. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023.  https://doi.org/10.1038/4441022a CrossRefGoogle Scholar
  136. Lightfoot YL, Selle K, Yang T, Goh YJ, Sahay B, Zadeh M, Owen JL, Colliou N, Li E, Johannssen T, Lepenies B (2015) SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J 34(7):881–895.  https://doi.org/10.15252/embj.201490296 CrossRefGoogle Scholar
  137. Lin HC, Su BH, Chen AC, Lin TW, Tsai CH, Yeh TF, Oh W (2005) Oral probiotics reduce the incidence and severity of necrotizing enterocolitis in very low birth weight infants. Pediatrics 115(1):1–4CrossRefGoogle Scholar
  138. Lin HC, Hsu CH, Chen HL, Chung MY, Hsu JF, Lien RI, Tsao LY, Chen CH, Su BH (2008) Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics 122(4):693–700CrossRefGoogle Scholar
  139. Lindenbaum J, Rund DG, Butler VP Jr, Tse-Eng D, Saha JR (1981) Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 305(14):789–794.  https://doi.org/10.1056/NEJM198110013051403 CrossRefGoogle Scholar
  140. Loftus EV (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126:1504–1517.  https://doi.org/10.1053/j.gastro.2004.01.063 CrossRefGoogle Scholar
  141. London J (1976) The ecology and taxonomic status of the lactobacilli. Annu Rev Microbiol 30(1):279–301CrossRefGoogle Scholar
  142. Lopez CA, Kingsbury DD, Velazquez EM, Bäumler AJ (2014) Collateral damage: microbiota-derived metabolites and immune function in the antibiotic era. Cell Host Microbe 16(2):156–163.  https://doi.org/10.1016/j.chom.2014.07.009 CrossRefGoogle Scholar
  143. Lorenzo A, Costacurta M, Merra G, Gualtieri P, Cioccoloni G, Marchetti M, Varvaras D, Docimo R, Renzo L (2017) Can psychobiotics intake modulate psychological profile and body composition of women affected by normal weight obese syndrome and obesity? A double blind randomized clinical trial. J Transl Med 15:135.  https://doi.org/10.1186/s12967-017-1236-2 CrossRefGoogle Scholar
  144. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294(1):1–8.  https://doi.org/10.1111/j.1574-6968.2009.01514.x CrossRefGoogle Scholar
  145. Ma Q, Lu AY (2011) Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 63:437–459.  https://doi.org/10.1124/pr.110.003533 CrossRefGoogle Scholar
  146. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, Ferrante M (2013) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63:1204–1205.  https://doi.org/10.1136/gutjnl-2013-304833 CrossRefGoogle Scholar
  147. Madhu A, Giribhattanavar P, Narayan M, Prapulla S (2009) Probiotic lactic acid bacterium from kanjika as a potential source of vitamin B12: evidence from LC-MS, immunological and microbiological techniques. Biotechnol Lett 32(4):503–506.  https://doi.org/10.1007/s10529-009-0176-1 CrossRefGoogle Scholar
  148. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103(42):15611–15616.  https://doi.org/10.1073/pnas.0607117103 CrossRefGoogle Scholar
  149. Marco ML, De Vries MC, Wels M, Molenaar D, Mangell P, Ahrne S, De Vos WM, Vaughan EE, Kleerebezem M (2010) Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J 4(11):1481–1484.  https://doi.org/10.1038/ismej.2010.61 CrossRefGoogle Scholar
  150. Marcone S, Belton O, Fitzgerald DJ (2017) Milk-derived bioactive peptides and their health promoting effects: a potential role in atherosclerosis. Br J Clin Pharmacol 83(1):152–162.  https://doi.org/10.1111/bcp.13002 CrossRefGoogle Scholar
  151. Masuda M, IDE M, Utsumi H, Niiro T, Shimamura Y, Murata M (2012) Production potency of folate, vitamin B12 and thiamine by lactic acid bacteria isolated from Japanese pickles. Biosci Biotechnol Biochem 76(11):2061–2067.  https://doi.org/10.1271/bbb.120414 CrossRefGoogle Scholar
  152. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118.  https://doi.org/10.1016/j.cell.2005.05.007 CrossRefGoogle Scholar
  153. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453(7195):620–625.  https://doi.org/10.1038/nature07008 CrossRefGoogle Scholar
  154. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764.  https://doi.org/10.1017/S0007114510004319 CrossRefGoogle Scholar
  155. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, Mangifesta M, Hevia A, Viappiani A, Scholz M, Arioli S (2015) Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 5:15782.  https://doi.org/10.1038/srep15782 CrossRefGoogle Scholar
  156. Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, Merad M (2014) Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343(6178):1249288.  https://doi.org/10.1126/science.1249288 CrossRefGoogle Scholar
  157. Motherway MO, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, O’Brien F, Flynn K, Casey PG, Munoz JA, Kearney B (2011) Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A 108(27):11217–11222.  https://doi.org/10.1073/pnas.1105380108 CrossRefGoogle Scholar
  158. Murphy PJ (2001) Xenobiotic metabolism: a look from the past to the future. Drug Metab Dispos 29(6):779–780Google Scholar
  159. Musso G, Gambino R, Cassader M (2010) Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 33(10):2277–2284CrossRefGoogle Scholar
  160. Neis EP, Dejong CH, Rensen SS (2015) The role of microbial amino acid metabolism in host metabolism. Nutrients 7(4):2930–2946.  https://doi.org/10.3390/nu7042930 CrossRefGoogle Scholar
  161. Nicholson JK, Holmes E, Lindon JC, Wilson ID (2004) The challenges of modeling mammalian biocomplexity. Nat Biotechnol 22:1268–1274.  https://doi.org/10.1038/nbt1015 CrossRefGoogle Scholar
  162. Okuda KI, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57(11):5572–5579.  https://doi.org/10.1128/AAC.00888-13 CrossRefGoogle Scholar
  163. Omar JM, Chan YM, Jones ML, Prakash S, Jones PJ (2013) Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. J Funct Foods 5(1):116–123.  https://doi.org/10.1016/j.jff.2012.09.001 CrossRefGoogle Scholar
  164. Panicker AS, Behare PV, Munjal K, Kumar S, Naru J, Singh S, Rawat P, Bathla S, Bhushan B, Jamwal M, Mohanty AK (2015) Differential proteome study of putative probiotic Lactobacillus fermentum Bif-19 strain in response to bile stress. J Proteins Proteomics 6(2):197–210Google Scholar
  165. Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L, Chandel DS, Baccaglini L, Mohapatra A, Mohapatra SS, Misra PR, Chaudhry R (2017) A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548(7668):407–412.  https://doi.org/10.1038/nature23480 CrossRefGoogle Scholar
  166. Patterson AD, Turnbaugh PJ (2014) Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology. Cell Metab 20(5):761–768.  https://doi.org/10.1016/j.cmet.2014.07.002 CrossRefGoogle Scholar
  167. Peng GC, Hsu CH (2005) The efficacy and safety of heat-killed Lactobacillus paracasei for treatment of perennial allergic rhinitis induced by house-dust mite. Pediatr Allergy Immunol 16(5):433–438.  https://doi.org/10.1111/j.1399-3038.2005.00284.x CrossRefGoogle Scholar
  168. Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Factories 13:S3.  https://doi.org/10.1186/1475-2859-13-S1-S3 CrossRefGoogle Scholar
  169. Peterson DA, McNulty NP, Guruge JL, Gordon JI (2007) IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2(5):328–339.  https://doi.org/10.1016/j.chom.2007.09.013 CrossRefGoogle Scholar
  170. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L, Myridakis A (2017) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107–113.  https://doi.org/10.1038/nm.4236 CrossRefGoogle Scholar
  171. Pu F, Guo Y, Li M, Zhu H, Wang S, Shen X, He M, Huang C, He F (2017) Yogurt supplemented with probiotics can protect the healthy elderly from respiratory infections: a randomized controlled open-label trial. Clin Interv Aging 12:1223–1231.  https://doi.org/10.2147/CIA.S141518 CrossRefGoogle Scholar
  172. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60.  https://doi.org/10.1038/nature11450 CrossRefGoogle Scholar
  173. Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TM (2014) Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes 38(12):1525–1531.  https://doi.org/10.1038/ijo.2014.46 CrossRefGoogle Scholar
  174. Rajilić–Stojanović M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, de Vos WM (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141(5):1792–1801.  https://doi.org/10.1053/j.gastro.2011.07.043 CrossRefGoogle Scholar
  175. Raoult D, Henrissat B (2014) Are stool samples suitable for studying the link between gut microbiota and obesity? Eur J Epidemiol 29(5):307–309.  https://doi.org/10.1007/s10654-014-9905-4 CrossRefGoogle Scholar
  176. Rautava S, Collado MC, Salminen S, Isolauri E (2012) Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology 102(3):178–184CrossRefGoogle Scholar
  177. Remely M, Tesar I, Hippe B, Gnauer S, Rust P, Haslberger AG (2015) Gut microbiota composition correlates with changes in body fat content due to weight loss. Benefic Microbes 6(4):431–439.  https://doi.org/10.3920/BM2014.0104 CrossRefGoogle Scholar
  178. Ren D, Li L, Schwabacher AW, Young JW, Beitz DC (1996) Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids 61(1):33–40CrossRefGoogle Scholar
  179. Renuka, Agnihotri N, Singh AP, Bhatnagar A (2016) Involvement of regulatory T cells and their cytokines repertoire in chemopreventive action of fish oil in experimental colon cancer. Nutr Cancer 68(7):1181–1191.  https://doi.org/10.1080/01635581.2016.1212245 CrossRefGoogle Scholar
  180. Renuka, Agnihotri N, Bhatnagar A (2018) Differential ratios of fish/corn oil ameliorated the colon carcinoma in rat by altering intestinal intraepithelial CD8+ T lymphocytes, dendritic cells population and modulating the intracellular cytokines. Biomed Pharmacother 98:600–608.  https://doi.org/10.1016/j.biopha.2017.12.041 CrossRefGoogle Scholar
  181. Renwick AG, Tarka SM (2008) Microbial hydrolysis of steviol glycosides. Food Chem Toxicol 46(7):70–74.  https://doi.org/10.1016/j.fct.2008.05.008 CrossRefGoogle Scholar
  182. Repa A, Thanhaeuser M, Endress D, Weber M, Kreissl A, Binder C, Berger A, Haiden N (2014) Probiotics (Lactobacillus acidophilus and Bifidobacterium bifidum) prevent NEC in VLBW infants fed breast milk but not formula. Pediatr Res 77(2):381–388.  https://doi.org/10.1038/pr.2014.192 CrossRefGoogle Scholar
  183. Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol 2(2):43–53Google Scholar
  184. Roediger WE (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21(9):793–798CrossRefGoogle Scholar
  185. Said HM, Mohammed ZM (2006) Intestinal absorption of water-soluble vitamins: an update. Curr Opin Gastroenterol 22(2):140–146.  https://doi.org/10.1097/01.mog.0000203870.22706.52 CrossRefGoogle Scholar
  186. Saini K, Tomar SK, Sangwan V, Bhushan B (2014) Evaluation of lactobacilli from human sources for uptake and accumulation of selenium. Biol Trace Elem Res 160:433.  https://doi.org/10.1007/s12011-014-0065-x CrossRefGoogle Scholar
  187. Saini K, Tomar SK, Bhushan B, Ali B, Sangwan V (2015) Health effects of selenium supplementation: chemical form and dose hold the key. Curr Top Nutraceutical Res 13(1):1–13Google Scholar
  188. Salminen S, Bouley C, Boutron MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80:147–171.  https://doi.org/10.1079/BJN19980108 CrossRefGoogle Scholar
  189. Sánchez A, Vázquez A (2017) Bioactive peptides: a review. Food Qual Saf 1(1):29–46CrossRefGoogle Scholar
  190. Sanchez M, Darimont C, Drapeau V, Emady-Azar S, Lepage M, Rezzonico E, Ngom-Bru C, Berger B, Philippe L, Ammon-Zuffrey C, Leone P (2014) Effect of Lactobacillus rhamnosus CGMCC1. 3724 supplementation on weight loss and maintenance in obese men and women. Br J Nutr 111(8):1507–1519.  https://doi.org/10.1017/S0007114513003875 CrossRefGoogle Scholar
  191. Sano T, Huang W, Hall JA, Yang Y, Chen A, Gavzy SJ, Lee JY, Ziel JW, Miraldi ER, Domingos AI, Bonneau R (2015) An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163(2):381–393.  https://doi.org/10.1016/j.cell.2015.08.061 CrossRefGoogle Scholar
  192. Santos F, Wegkamp A, de Vos WM, Smid EJ, Hugenholtz J (2008) High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl Environ Microbiol 74(10):3291–3294.  https://doi.org/10.1128/AEM.02719-07 CrossRefGoogle Scholar
  193. Saulnier DM, Santos F, Roos S, Mistretta TA, Spinler JK, Molenaar D, Teusink B, Versalovic J (2011) Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS One 6(4):e18783.  https://doi.org/10.1371/journal.pone.0018783 CrossRefGoogle Scholar
  194. Schiavi E, Gleinser M, Molloy E, Groeger D, Frei R, Ferstl R, Rodriguez-Perez N, Ziegler M, Grant R, Moriarty TF, Plattner S (2016) The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses. Appl Environ Microbiol 82(24):7185–7196.  https://doi.org/10.1128/AEM.02238-16 CrossRefGoogle Scholar
  195. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14(3):303–310.  https://doi.org/10.1016/S0958-1669(03)00067-3 CrossRefGoogle Scholar
  196. Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857.  https://doi.org/10.1126/science.aad8588 CrossRefGoogle Scholar
  197. Seksik P, Sokol H, Lepage P, Vasquez N, Manichanh C, Mangin I, Pochart P, Dore J, Marteau P (2006) The role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment Pharmacol Ther 24:11–18.  https://doi.org/10.1111/j.1365-2036.2006.03053.x CrossRefGoogle Scholar
  198. Shen W, Shen M, Zhao X, Zhu H, Yang Y, Lu S, Tan Y, Li G, Li M, Wang J, Hu F, Le S (2017) Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the gut bacterium Akkermansia muciniphila. Front Microbiol 8:272.  https://doi.org/10.3389/fmicb.2017.00272 CrossRefGoogle Scholar
  199. Sierra S, Lara-Villoslada F, Sempere L, Olivares M, Boza J, Xaus J (2010) Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe 16(3):195–200.  https://doi.org/10.1016/j.anaerobe.2010.02.001 CrossRefGoogle Scholar
  200. Singh BP, Vij S (2017) Growth and bioactive peptides production potential of Lactobacillus plantarum strain C2 in soy milk: a LC-MS/MS based revelation for peptides biofunctionality. LWT-Food Sci Technol 86:293–301.  https://doi.org/10.1016/j.lwt.2017.08.013 CrossRefGoogle Scholar
  201. Singh BP, Vij S (2018) In vitro stability of bioactive peptides derived from fermented soy milk against heat treatment, pH and gastrointestinal enzymes. LWT-Food Sci Technol 91:303–307.  https://doi.org/10.1016/j.lwt.2018.01.066 CrossRefGoogle Scholar
  202. Singh BP, Vij S, Hati S (2014) Functional significance of bioactive peptides derived from soybean. Peptides 54:171–179.  https://doi.org/10.1016/j.peptides.2014.01.022 CrossRefGoogle Scholar
  203. Singh BP, Yadav D, Vij S (2017) Soybean bioactive molecules: current trend and future prospective. In: Mérillon JM, Ramawat KG (eds) Bioactive molecules in food, reference series in phytochemistry. Springer International Publishing AG, Switzerland, pp 1–29.  https://doi.org/10.1007/978-3-319-54528-8_4-1 CrossRefGoogle Scholar
  204. Smith TJ, Rigassio-Radler D, Denmark R, Haley T, Touger-Decker R (2013) Effect of Lactobacillus rhamnosus LGG® and Bifidobacterium animalis ssp. lactis BB-12® on health-related quality of life in college students affected by upper respiratory infections. Br J Nutr 109(11):1999–2007.  https://doi.org/10.1017/S0007114512004138 CrossRefGoogle Scholar
  205. Sokol H, Lay C, Seksik P, Tannock GW (2008) Analysis of bacterial bowel communities of IBD patients: what has it revealed? Inflamm Bowel Dis 14(6):858–867.  https://doi.org/10.1002/ibd.20392 CrossRefGoogle Scholar
  206. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW (2008) The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 363:1–25.  https://doi.org/10.1016/j.ijpharm.2008.07.009 CrossRefGoogle Scholar
  207. Spaiser SJ, Culpepper T, Nieves C Jr, Ukhanova M, Mai V, Percival SS, Christman MC, Langkamp-Henken B (2015) Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2 ingestion induces a less inflammatory cytokine profile and a potentially beneficial shift in gut microbiota in older adults: a randomized, double-blind, placebo-controlled, crossover study. J Am Coll Nutr 34(6):459–469.  https://doi.org/10.1080/07315724.2014.983249 CrossRefGoogle Scholar
  208. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65(11):4799–4807Google Scholar
  209. Sundin J, Rangel I, Fuentes S, Heikamp-de Jong I, Hultgren-Hörnquist E, Vos WM, Brummer RJ (2015) Altered faecal and mucosal microbial composition in post-infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress. Aliment Pharmacol Ther 41(4):342–351.  https://doi.org/10.1111/apt.13055 CrossRefGoogle Scholar
  210. Tang C, Kamiya T, Liu Y, Kadoki M, Kakuta S, Oshima K, Hattori M, Takeshita K, Kanai T, Saijo S, Ohno N (2015a) Inhibition of dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18(2):183–197.  https://doi.org/10.1016/j.chom.2015.07.003 CrossRefGoogle Scholar
  211. Tang J, Zheng JS, Fang L, Jin Y, Cai W, Li D (2015b) Tea consumption and mortality of all cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies. Br J Nutr 114(5):673–683.  https://doi.org/10.1017/S0007114515002329 CrossRefGoogle Scholar
  212. Tang WW, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL (2015c) Gut microbiota-dependent trimethylamine n-oxide (tmao) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease novelty and significance. Circ Res 116(3):448–455CrossRefGoogle Scholar
  213. Tap J, Derrien M, Törnblom H, Brazeilles R, Cools-Portier S, Doré J, Störsrud S, Le Nevé B, Öhman L, Simrén M (2017) Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology 152(1):111–123.  https://doi.org/10.1053/j.gastro.2016.09.049 CrossRefGoogle Scholar
  214. Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F (2003) Lactobacillus reuteri CRL1098 produces cobalamin. J Bacteriol 185(18):5643–5647.  https://doi.org/10.1128/JB.185.18.5643-5647.2003 CrossRefGoogle Scholar
  215. Thaiss CA, Levy M, Itav S, Elinav E (2016) Integration of innate immune signaling. Trends Immunol 37(2):84–101.  https://doi.org/10.1016/j.it.2015.12.003 CrossRefGoogle Scholar
  216. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836.  https://doi.org/10.1042/BCJ20160510 CrossRefGoogle Scholar
  217. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Res 81(3):1031–1064.  https://doi.org/10.1152/physrev.2001.81.3.1031 CrossRefGoogle Scholar
  218. Trebichavsky I, Splichal I, Rada V, Splichalova A (2010) Modulation of natural immunity in the gut by Escherichia coli strain Nissle 1917. Nutr Rev 68(8):459–464.  https://doi.org/10.1111/j.1753-4887.2010.00305.x CrossRefGoogle Scholar
  219. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science:aad1329.  https://doi.org/10.1126/science.aad1329 CrossRefGoogle Scholar
  220. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342(6161):971–976.  https://doi.org/10.1126/science.1240537 CrossRefGoogle Scholar
  221. Villarruel G, Rubio DM, Lopez F, Cintioni J, Gurevech R, Romero G, Vandenplas Y (2007) Saccharomyces boulardii in acute childhood diarrhoea: a randomized, placebo-controlled study. Acta Paediatr 96(4):538–541.  https://doi.org/10.1111/j.1651-2227.2007.00191.x CrossRefGoogle Scholar
  222. Walker AW, Duncan SH, Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71(7):3692–3700.  https://doi.org/10.1128/AEM.71.7.3692-3700.2005 CrossRefGoogle Scholar
  223. Walsh MC, Gardiner GE, Hart OM, Lawlor PG, Daly M, Lynch B, Richert BT, Radcliffe S, Giblin L, Hill C, Fitzgerald GF (2008) Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiol Ecol 64(2):317–327.  https://doi.org/10.1111/j.1574-6941.2008.00454.x CrossRefGoogle Scholar
  224. Wang M, Ahrné S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54(2):219–231.  https://doi.org/10.1016/j.femsec.2005.03.012 CrossRefGoogle Scholar
  225. Wang Z, Zeng X, Mo Y, Smith K, Guo Y, Lin J (2012) Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl Environ Microbiol 78(24):8795–8802.  https://doi.org/10.1128/AEM.02519-12 CrossRefGoogle Scholar
  226. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106(10):3698–3703.  https://doi.org/10.1073/pnas.0812874106 CrossRefGoogle Scholar
  227. Williams RJ (1956) Biochemical individuality; the basis for the genetotrophic concept. Wiley, OxfordGoogle Scholar
  228. Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15(7):473–484.  https://doi.org/10.1038/nrd.2016.32 CrossRefGoogle Scholar
  229. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3):235–243CrossRefGoogle Scholar
  230. Wong AC, Dobson AJ, Douglas AE (2014) Gut microbiota dictates the metabolic response of Drosophila to diet. J Exp Biol 217(11):1894–1901.  https://doi.org/10.1242/jeb.101725 CrossRefGoogle Scholar
  231. Yamakami K, Tsumori H, Sakurai Y, Shimizu Y, Nagatoshi K, Sonomoto K (2013) Sustainable inhibition efficacy of liposome-encapsulated nisin on insoluble glucan-biofilm synthesis by Streptococcus mutans. Pharm Biol 51(2):267–270.  https://doi.org/10.3109/13880209.2012.717227 CrossRefGoogle Scholar
  232. Yan F, Liu L, Dempsey PJ, Tsai YH, Raines EW, Wilson CL, Cao H, Cao Z, Liu L, Polk DB (2013) A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. J Biol Chem 288(42):30742–30751.  https://doi.org/10.1074/jbc.M113.492397 CrossRefGoogle Scholar
  233. Yoon JS, Sohn W, Lee OY, Lee SP, Lee KN, Jun DW, Lee HL, Yoon BC, Choi HS, Chung WS, Seo JG (2014) Effect of multispecies probiotics on irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J Gastroenterol Hepatol 29(1):52–59.  https://doi.org/10.1111/jgh.12322 CrossRefGoogle Scholar
  234. Yu LC, Shih YA, Wu LL, Lin YD, Kuo WT, Peng WH, Lu KS, Wei SC, Turner JR, Ni YH (2014) Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis. Am J Physiol Gastrointest Liver Physiol 307(8):824–835.  https://doi.org/10.1152/ajpgi.00070.2014 CrossRefGoogle Scholar
  235. Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, Burk RD, Kunisaki Y, Jang JE, Scheiermann C, Merad M (2015a) Neutrophil ageing is regulated by the microbiome. Nature 525(7570):528–532.  https://doi.org/10.1038/nature15367 CrossRefGoogle Scholar
  236. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, Wu X, Li J, Tang L, Li Y, Lan Z (2015b) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 21(8):895–905.  https://doi.org/10.1038/nm.3914 CrossRefGoogle Scholar
  237. Zhang Z, Zhou Z, Li Y, Zhou L, Ding Q, Xu L (2016) Isolated exopolysaccharides from Lactobacillus rhamnosus GG alleviated adipogenesis mediated by toll like receptor 2 in mice. Sci Rep 6:36083.  https://doi.org/10.1038/srep36083 CrossRefGoogle Scholar
  238. Zhang Q, Xiao X, Li M, Yu M, Ping F, Zheng J, Wang T, Wang X (2017) Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS One 12(10):e0184735.  https://doi.org/10.1371/journal.pone.0184735 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bharat Bhushan
    • 1
  • Brij Pal Singh
    • 2
  • Mamta Kumari
    • 1
  • Vijendra Mishra
    • 1
  • Kamna Saini
    • 3
  • Devender Singh
    • 4
  1. 1.National Institute of Food Technology Entrepreneurship and ManagementSonipatIndia
  2. 2.RK UniversityRajkotIndia
  3. 3.Institute of Applied Medicines and Research (IAMR)GhaziabadIndia
  4. 4.ICAR- National Dairy Research InstituteKarnalIndia

Personalised recommendations