Advertisement

Bioactive Compounds from Nocardia: Biosynthesis and Production

  • Dipesh DhakalEmail author
  • Anil Shrestha
  • Nguyen Huy Thuan
  • Vijay Rayamajhi
  • Ravindra Mishra
  • Rubin Thapa Magar
  • Jae Kyung SohngEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 28)

Abstract

The infection caused by drug-resistant pathogens, such as cancer and cardiovascular diseases, are major causes of mortality in the world. Diverse bioactive molecules isolated from microbial or plant sources are used for the ailment of such infections or disease conditions. Since a few years, a group of microorganisms named “rare actinomycetes” are more frequently unveiled as excellent sources of bioactive molecules. Nocardia spp. are important members of “rare actinobacteria” and characterized as the prominent microbial source for the isolation of diverse bioactive molecules with pharmaceutical values. Nocardia spp. are catalase positive, aerobic, and nonmotile Gram-positive filamentous bacteria. They contain high guanine plus cytosine (G+C) content in their genome. Nocardia have been studied for a long time, primarily for strain characterization and taxonomic classification of new isolates. Most species are reported as unusual causes of diverse clinical diseases in both humans and animals. Hence, most species are clinical isolates, whereas only few species have been isolated from common natural habitats, such as soil and water.

Recently, novel strains belonging to rare actinobacteria have been explored for isolating and characterizing diverse bioactive metabolites. Hence, there is emerging interest in bioactive molecules from such rare actinobacteria, as Nocardia spp. Here, we present bioactive molecules derived from Nocardia species and biosynthetic mechanism of few such biomolecules, such as nocardicins, nargenicin, nocardiothiocin, and nocobactin. For commercial use, there is a requirement of large-scale production by microbial fermentation, chemical synthesis, or semisynthetic processes. Hence, advances in genetic engineering of Nocardia spp. for enhancing the production titer or structurally diversifying pharmaceutically important biomolecules are also presented. Moreover, with current technological advances, it is feasible to explore the genomic, proteomic, transcriptomic, and metabolic information of most of Nocardia spp.

Keywords

Nocardia spp. Classification and taxonomy Bioactive compounds Metabolic engineering Synthetic biology 

Notes

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST), (NRF-2014R1A2A2A01002875) provided to Prof. Jae Kyung Sohng and (NRF-2017R1D1A1B03036273) provided to Dr. Dipesh Dhakal.

References

  1. Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208.  https://doi.org/10.1111/1751-7915.12117 CrossRefGoogle Scholar
  2. Aoki H, Sakai H, Kohsaka M, Konomi T, Hosoda J, Kubochi Y, Iguchi E, Imanaks H (1976) Nocardicin A, a new monocyclic β-lactam antibiotic. I. Discovery, isolation and characterization. J Antibiot 29:492–500.  https://doi.org/10.7164/antibiotics.29.492 CrossRefGoogle Scholar
  3. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43.  https://doi.org/10.1128/MMBR.00019-15 CrossRefGoogle Scholar
  4. Brown GM, Dubreuil P, Ichhaporia FM, Desnoyers JE (1970) Synthesis and properties of some α-D-alkyl glucosides and mannosides: apparent molal volumes and solubilization of nitrobenzene in water at 25 C. Can J Chem 48:2525–2531CrossRefGoogle Scholar
  5. Brown-Elliott BA, Brown JM, Conville PS, Wallace RJ Jr (2006) Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev 19:259–282.  https://doi.org/10.1128/CMR.19.2.259-282.2006 CrossRefGoogle Scholar
  6. Cane DE, Yang CC (1984) Biosynthetic origin of the carbon skeleton and oxygen atoms of nargenicin A1. J Am Chem Soc 106:784–787.  https://doi.org/10.1021/ja00315a052 CrossRefGoogle Scholar
  7. Cane DE, Yang CC (1985) Nargenicin biosynthesis: late stage oxidations and absolute configuration. J Antibiot 38:423–426.  https://doi.org/10.7164/antibiotics.38.423 CrossRefGoogle Scholar
  8. Cane DE, Tan W, Ott WR (1993) Nargenicin biosynthesis. Incorporation of polyketide chain elongation intermediates and support for a proposed intramolecular Diels-Alder cyclization. J Am Chem Soc 115:527–535.  https://doi.org/10.1021/ja00055a024 CrossRefGoogle Scholar
  9. Celmer WD, Chmurny GN, Moppett CE, Ware RS, Watts PT, Whipple EB (1980) Structure of natural antibiotic CP-47,444. J Am Chem Soc 102:4203–4209.  https://doi.org/10.1021/ja00532a036 CrossRefGoogle Scholar
  10. Chaudhary AK, Dhakal D, Sohng JK (2013) An insight into the “-omics” based engineering of streptomycetes for secondary metabolite overproduction. Biomed Res Int 2013:968518.  https://doi.org/10.1155/2013/968518 CrossRefGoogle Scholar
  11. Chiba K, Hoshino Y, Ishino K, Kogure T, Mikami Y, Uehara Y, Ishikawa J (2007) Construction of a pair of practical Nocardia-Escherichia coli shuttle vectors. Jpn J Infect Dis 60:45–47Google Scholar
  12. Conville PS, Fischer SH, Cartwright CP, Witebsky FG (2000) Identification of Nocardia species by restriction endonuclease analysis of an amplified portion of the 16S rRNA gene. J Clin Microbiol 38:158–164Google Scholar
  13. Davidsen JM, Townsend CA (2012) In vivo characterization of nonribosomal peptide synthetases NocA and NocB in the biosynthesis of nocardicin A. Chem Biol 19:297–306.  https://doi.org/10.1016/j.chembiol.2011.10.020 CrossRefGoogle Scholar
  14. Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microb Biotechnol 4:687–699.  https://doi.org/10.1111/j.1751-7915.2010.00221.x CrossRefGoogle Scholar
  15. Dhakal D, Sohng JK (2015a) Laboratory maintenance of Nocardia species. Curr Protoc Microbiol 39:10F.1.1–10F.1.8.  https://doi.org/10.1002/9780471729259.mc10f01s39 CrossRefGoogle Scholar
  16. Dhakal D, Sohng JK (2015b) Commentary: toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front Microbiol 6:727.  https://doi.org/10.3389/fmicb.2015.00727 CrossRefGoogle Scholar
  17. Dhakal D, Sohng JK (2017) Coalition of biology and chemistry for ameliorating antimicrobial drug discovery. Front Microbiol 8:734.  https://doi.org/10.3389/fmicb.2017.00734 CrossRefGoogle Scholar
  18. Dhakal D, Le TT, Pandey RP, Jha AK, Gurung R, Parajuli P, Pokhrel AR, Yoo JC, Sohng JK (2015) Enhanced production of nargenicin A1 and generation of novel glycosylated derivatives. Appl Biochem Biotechnol 175:2934–2949.  https://doi.org/10.1007/s12010-014-1472-3 CrossRefGoogle Scholar
  19. Dhakal D, Chaudhary AK, Yi JS, Pokhrel AR, Shrestha B, Parajuli P, Shrestha A, Yamaguchi T, Jung HJ, Kim SY, Kim BG (2016a) Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Appl Microbiol Biotechnol 100:9917–9931.  https://doi.org/10.1007/s00253-016-7705-3 CrossRefGoogle Scholar
  20. Dhakal D, Kumar Jha A, Pokhrel A, Shrestha A, Sohng JK (2016b) Genetic manipulation of Nocardia species. Curr Protoc Microbiol 2016:10F.2.1–10F.218.  https://doi.org/10.1002/9780471729259.mc10f02s40 CrossRefGoogle Scholar
  21. Dhakal D, Pokhrel AR, Shrestha B, Sohng JK (2017) Marine rare actinobacteria: isolation, characterization, and strategies for harnessing bioactive compounds. Front Microbiol 8:1106.  https://doi.org/10.3389/fmicb.2017.01106 CrossRefGoogle Scholar
  22. Dye C (2014) After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond B Biol Sci.369:20130426.  https://doi.org/10.1098/rstb.2013.0426. Print 2014CrossRefGoogle Scholar
  23. El-Gendy MM, Hawas UW, Jaspars M (2008) Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000. J Antibiot 61:379–386.  https://doi.org/10.1038/ja.2008.53 CrossRefGoogle Scholar
  24. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386.  https://doi.org/10.1002/ijc.29210 CrossRefGoogle Scholar
  25. Gaudelli NM, Townsend CA (2014) Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis. Nat Chem Biol 10:251–258.  https://doi.org/10.1038/nchembio.1456 CrossRefGoogle Scholar
  26. Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34:1203–1232.  https://doi.org/10.1039/c7np00026j CrossRefGoogle Scholar
  27. Goodfellow M (1992) The family Nocardiaceae. In: Balows A, Truper HG, Dworkin M, Harder W, Scheifer K-H (eds) The prokaryotes. Springer, New York, pp 1188–1212Google Scholar
  28. Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (2012) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  29. Gordon RE, Mihm JM (1957) A comparative study of some strains received as Nocardiae. J Bacteriol 73:15–27Google Scholar
  30. Gordon RE, Mihm JM (1962) Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 98:628–636CrossRefGoogle Scholar
  31. Gunsior M, Breazeale SD, Lind AJ, Ravel J, Janc JW, Townsend CA (2004) The biosynthetic gene cluster for a monocyclic β-lactam antibiotic, nocardicin A. Chem Biol 11:927–938.  https://doi.org/10.1016/j.chembiol.2004.04.012 CrossRefGoogle Scholar
  32. Hara S, Ishikawa N, Hara Y, Nehira T, Sakai K, Gonoi T, Ishibashi M (2017) Nabscessins A and B, Aminocyclitol Derivatives from Nocardia abscessus IFM 10029T. J Nat Prod 80:565–568.  https://doi.org/10.1021/acs.jnatprod.6b00935 CrossRefGoogle Scholar
  33. Hashimoto M, Komori T, Kamiya T (1976) Nocardicin A, a new monocyclic β-lactam antibiotic. II. Structure determination of nocardicins A and B. J Antibiot (Tokyo) 29:890–901.  https://doi.org/10.7164/antibiotics.29.890 CrossRefGoogle Scholar
  34. Hayashi Y, Matsuura N, Toshima H, Itoh N, Ishikawa J, Mikami Y, Dairi T (2008) Cloning of the gene cluster responsible for the biosynthesis of brasilicardin A, a unique diterpenoid. J Antibiot 61:164–174.  https://doi.org/10.1038/ja.2008.126 CrossRefGoogle Scholar
  35. Hoshino Y, Mukai A, Yazawa K, Uno J, Ishikawa J, Ando A, Fukai T, Mikami Y (2004) Transvalencin A, a thiazolidine zinc complex antibiotic produced by a clinical isolate of Nocardia transvalensis. J Antibiot 57(12):797–802.  https://doi.org/10.7164/antibiotics.57.803 CrossRefGoogle Scholar
  36. Hoshino Y, Chiba K, Ishino K, Fukai T, Igarashi Y, Yazawa K, Mikami Y, Ishikawa J (2011) Identification of nocobactin NA biosynthetic gene clusters in Nocardia farcinica. J Bacteriol 193:441–448.  https://doi.org/10.1128/JB.00897-10 CrossRefGoogle Scholar
  37. Hosoda J, Tani N, Konomi T, Ohsawa S, Aoki H, Imanaka H (1977) Incorporation of 14C-amino acids into nocardicin A by growing cells. Biosci Biotechnol Biochem 41:2007–2012.  https://doi.org/10.1080/00021369.1977.10862798 CrossRefGoogle Scholar
  38. Igarashi M, Hayashi C, Homma Y, Hattori S, Kinoshita N, Hamada M, Takeuchi T (2000) Tubelactomicin A, a novel 16-membered lactone antibiotic, from Nocardia sp. I. Taxonomy, production, isolation and biological properties. J Antibiot (Tokyo) 53:1096–1101.  https://doi.org/10.7164/antibiotics.53.1096 CrossRefGoogle Scholar
  39. Ikeda Y, Nonaka H, Furumai T, Onaka H, Igarashi Y (2005) Nocardimicins A, B, C, D, E, and F, siderophores with muscarinic M3 receptor inhibiting activity from Nocardia sp. TP-A0674. J Nat Prod 68:1061–1065.  https://doi.org/10.1021/np050091j CrossRefGoogle Scholar
  40. Ishikawa J, Yamashita A, Mikami Y, Hoshino Y, Kurita H, Hotta K, Shiba T, Hattori M (2004) The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci U S A 101:14925–14930.  https://doi.org/10.1073/pnas.0406410101 CrossRefGoogle Scholar
  41. Jannat-Khah D, Kroppenstedt RM, Klenk HP, Spröer C, Schumann P, Lasker BA, Steigerwalt AG, Hinrikson HP, Brown JM (2010) Nocardia mikamii sp. nov., isolated from human pulmonary infections in the USA. Int J Syst Evol Microbiol 60:2272–2276.  https://doi.org/10.1099/ijs.0.015594-0 CrossRefGoogle Scholar
  42. Jha AK, Dhakal D, Van PT, Pokhrel AR, Yamaguchi T, Jung HJ, Yoon YJ, Sohng JK (2015) Structural modification of herboxidiene by substrate-flexible cytochrome P450 and glycosyltransferase. Appl Microbiol Biotechnol 99:3421–3431.  https://doi.org/10.1007/s00253-015-6431-6 CrossRefGoogle Scholar
  43. Just-Baringo X, Albericio F, Álvarez M (2014) Thiopeptide antibiotics: retrospective and recent advances. Mar Drugs 12:317–351.  https://doi.org/10.3390/md12010317 CrossRefGoogle Scholar
  44. Kamiya T (1977) Studies on the new monocyclic β-lactam antibiotics, nocardicins. In: Elks J (ed) Proceedings of international symposium of the chemical society, London, pp 281–294Google Scholar
  45. Kawada M, Inoue H, Ohba SI, Hatano M, Amemiya M, Hayashi C, Usami I, Abe H, Watanabe T, Kinoshita N, Igarashi M (2013) Intervenolin, a new antitumor compound with anti-Helicobacter pylori activity, from Nocardia sp. ML96-86F2. J Antibiot 66:543–548.  https://doi.org/10.1038/ja.2013.42 CrossRefGoogle Scholar
  46. Kelly WL, Townsend CA (2002) Role of the cytochrome P450 NocL in nocardicin A biosynthesis. J Am Chem Soc 124:8186–8187.  https://doi.org/10.1021/ja025926g CrossRefGoogle Scholar
  47. Kelly WL, Townsend CA (2005) Mutational analysis of nocK and nocL in the nocardicin a producer Nocardia uniformis. J Bacteriol 187:739–746.  https://doi.org/10.1128/JB.187.2.739-746.2005 CrossRefGoogle Scholar
  48. Kobayashi JI, Tsuda M, Nemoto A, Tanaka Y, Yazawa K, Mikami Y (1997) Brasilidine A, a new cytotoxic isonitrile-containing indole alkaloid from the actinomycete Nocardia brasiliensis. J Nat Prod 60:719–720.  https://doi.org/10.1021/np970132e CrossRefGoogle Scholar
  49. Kojo H, Mine Y, Nishida M, Goto S, Kuwahara S (1988) Nature of monocyclic β-lactam antibiotic nocardicin A to β-lactamases. Microbiol Immunol 32:119–130CrossRefGoogle Scholar
  50. Koju D, Maharjan S, Dhakal D, Yoo JC, Sohng JK (2012) Effect of different biosynthetic precursors on the production of nargenicin A1 from metabolically engineered Nocardia sp. CS682. J Microbiol Biotechnol 22:1127–1132CrossRefGoogle Scholar
  51. Komatsu K, Tsuda M, Shiro M, Tanaka Y, Mikami Y, Kobayashi J (2004) Brasilicardins B-D, new tricyclic terpenoids from actinomycete Nocardia brasiliensis. Bioorg Med Chem 12:5545–5551.  https://doi.org/10.1016/j.bmc.2004.08.007 CrossRefGoogle Scholar
  52. Kunimoto T, Sawa T, Wakashiro T, Hori M, Umezawa H (1971) Biosynthesis of the formycin family. J Antibiot 24:253–258.  https://doi.org/10.7164/antibiotics.24.253 CrossRefGoogle Scholar
  53. Kuo J, Lynch SR, Liu CW, Xiao X, Khosla C (2016) Partial in vitro reconstitution of an orphan polyketide synthase associated with clinical cases of nocardiosis. ACS Chem Biol 11:2636–2641.  https://doi.org/10.1021/acschembio.6b00489 CrossRefGoogle Scholar
  54. Kurup PV, Sandhu RS (1965) Isolation of Nocardia caviae from soil and its pathogenicity for laboratory animals. J Bacteriol 90:822–823Google Scholar
  55. Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15:279–289.  https://doi.org/10.1016/j.tim.2007.04.001 CrossRefGoogle Scholar
  56. Lee LH, Zainal N, Azman AS, Eng SK, Goh BH, Yin WF, Ab Mutalib NS, Chan KG (2014) Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia. Sci World J 2014:698178.  https://doi.org/10.1155/2014/698178 CrossRefGoogle Scholar
  57. Leet JE, Li W, Ax HA, Matson JA, Huang S, Huang R, Cantone JL, Drexler D, Dalterio RA, Lam KS (2003) Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp. J Antibiot 56:232–242.  https://doi.org/10.7164/antibiotics.56.232 CrossRefGoogle Scholar
  58. Li W, Leet JE, Ax HA, Gustavson DR, Brown DM, Turner L, Brown K, Clark J, Yang H, Fung-Tomc J, Lam KS (2003) Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp. J Antibiot 56:226–231.  https://doi.org/10.7164/antibiotics.56.226 CrossRefGoogle Scholar
  59. Liu X, Ding W, Jiang H (2017) Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production. Microb Cell Factories 16:125.  https://doi.org/10.1186/s12934-017-0732-7 CrossRefGoogle Scholar
  60. Luo Q, Hiessl S, Steinbüchel A (2014) Functional diversity of Nocardia in metabolism. Environ Microbiol 16:29–48.  https://doi.org/10.1111/1462-2920.12221 CrossRefGoogle Scholar
  61. Maeda A, Yazawa K, Mikami Y, Ishibashi M, Kobayashi JI (1992) The producer and biological activities of SO-075R1, a new mutactimycin group antibiotic. J Antibiot 45:1848–1852.  https://doi.org/10.7164/antibiotics.45.1848 CrossRefGoogle Scholar
  62. Magerlein BJ, Reid RJ (1982) Synthesis of 18-deoxynargenicin A1 (antibiotic 367c) from nargenicin A1. J Antibiot 35:254–255.  https://doi.org/10.7164/antibiotics.35.254 CrossRefGoogle Scholar
  63. Maharjan S, Aryal N, Bhattarai S, Koju D, Lamichhane J, Sohng JK (2012) Biosynthesis of the nargenicin A1 pyrrole moiety from Nocardia sp. CS682. Appl Microbiol Biotechnol 93:687–696.  https://doi.org/10.1007/s00253-011-3567-x CrossRefGoogle Scholar
  64. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145CrossRefGoogle Scholar
  65. McNeil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7:357–417CrossRefGoogle Scholar
  66. McTaggart LR, Richardson SE, Witkowska M, Zhang SX (2010) Phylogeny and identification of Nocardia species on the basis of multilocus sequence analysis. J Clin Microbiol 48:4525–4533CrossRefGoogle Scholar
  67. Metsä-Ketelä M (2017) Evolution inspired engineering of antibiotic biosynthesis enzymes. Org Biomol Chem 15:4036–4041.  https://doi.org/10.1039/C7OB00189D CrossRefGoogle Scholar
  68. Mikami Y (2007) Biological work on medically important Nocardia species. Actinomycetologica 21:46–51.  https://doi.org/10.3209/saj.SAJ210107 CrossRefGoogle Scholar
  69. Mikami Y, Yu SF, Yazawa K, Fukushima K, Maeda A, Uno J, Terao K, Saito N, Kubo A, Suzuki KI (1990) A toxic substance produced by Nocardia otitidiscaviarum isolated from cutaneous nocardiosis. Mycopathologia 112:113–118CrossRefGoogle Scholar
  70. Mikami Y, Komaki H, Imai T, Yazawa K, Nemoto A, Tanaka Y, Gräefe U (2000) A new antifungal macrolide component, brasilinolide B, produced by Nocardia brasiliensis. J Antibiot (Tokyo) 53:70–74.  https://doi.org/10.7164/antibiotics.53.70 CrossRefGoogle Scholar
  71. Mukai A, Fukai T, Matsumoto Y, Ishikawa J, Hoshino Y, Yazawa K, Harada KI, Mikami Y (2006) Transvalencin Z, a new antimicrobial compound with salicylic acid residue from Nocardia transvalensis IFM 10065. J Antibiot 59:366–369.  https://doi.org/10.1038/ja.2006.53 CrossRefGoogle Scholar
  72. Mukai A, Fukai T, Hoshino Y, Yazawa K, Harada KI, Mikami Y (2009) Nocardithiocin, a novel thiopeptide antibiotic, produced by pathogenic Nocardia pseudobrasiliensis IFM 0757. J Antibiot 62:613–619.  https://doi.org/10.1038/ja.2009.90 CrossRefGoogle Scholar
  73. Murakami Y, Kato S, Nakajima M, Matsuoka M, Kawai H, Shin-Ya K, Seto H (1996) Formobactin, a novel free radical scavenging and neuronal cell protecting substance from Nocardia sp. J Antibiot 49:839–845.  https://doi.org/10.7164/antibiotics.49.839 CrossRefGoogle Scholar
  74. Nemoto A, Tanaka Y, Karasaki Y, Komaki H, Yazawa K, Mikami Y (1997) Brasiliquinones A, B and C, new benz [alpha] anthraquinone antibiotics from Nocardia brasiliensis. I. Producing strain, isolation and biological activities of the. J Antibiot 50:18–21.  https://doi.org/10.7164/antibiotics.50.18 CrossRefGoogle Scholar
  75. Nemoto A, Hoshino Y, Yazawa K, Ando A, Mikami Y, Komaki H, Tanaka Y, Graefe U (2002) Asterobactin, a new siderophore group antibiotic from Nocardia asteroides. J Antibiot 55:593–597.  https://doi.org/10.7164/antibiotics.55.593 CrossRefGoogle Scholar
  76. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661.  https://doi.org/10.1021/acs.jnatprod.5b01055 CrossRefGoogle Scholar
  77. Nielsen DR, Moon TS (2013) From promise to practice, the role of synthetic biology in green chemistry. EMBO Rep 14:1034–1038.  https://doi.org/10.1038/embor.2013.178 CrossRefGoogle Scholar
  78. Noël A, Ferron S, Rouaud I, Gouault N, Hurvois JP, Tomasi S (2017) Isolation and structure identification of novel brominated diketopiperazines from Nocardia ignorata—A Lichen-associated actinobacterium. Molecules 22:371.  https://doi.org/10.3390/molecules22030371 CrossRefGoogle Scholar
  79. Ochi K, Kikuchi S, Yashima S, Eguchi Y (1976) Biosynthesis of formycin. Incorporation and distribution of labeled compounds into formycin. J Antibiot 29:638–645.  https://doi.org/10.7164/antibiotics.29.638 CrossRefGoogle Scholar
  80. Onaka H, Mori Y, Igarashi Y, Furumai T (2011) Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol 77:400–406.  https://doi.org/10.1128/AEM.01337-10 CrossRefGoogle Scholar
  81. Painter RE, Adam GC, Arocho M, DiNunzio E, Donald RG, Dorso K, Genilloud O, Gill C, Goetz M, Hairston NN, Murgolo N (2015) Elucidation of DnaE as the antibacterial target of the natural product, Nargenicin. Chem Biol 22:1362–1373.  https://doi.org/10.1016/j.chembiol.2015.08.015 CrossRefGoogle Scholar
  82. Patel PV, Ratledge C (1973) Isolation of lipid-soluble compounds that bind ferric ions from Nocardia species. Biochem Soc Trans 1:886–888CrossRefGoogle Scholar
  83. Pickens LB, Tang Y, Chooi YH (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236.  https://doi.org/10.1146/annurev-chembioeng-061010-114209 CrossRefGoogle Scholar
  84. Pokhrel AR, Dhakal D, Jha AK, Sohng JK (2015) Herboxidiene biosynthesis, production, and structural modifications: prospect for hybrids with related polyketide. Appl Microbiol Biotechnol 99:8351–8362.  https://doi.org/10.1007/s00253-015-6860-2 CrossRefGoogle Scholar
  85. Qian-Cutrone J, Ueki T, Huang S, Mookhtiar KA, Ezekiel R, Kalinowski SS, Brown KS, Golik J, Lowe S, Pirnik DM, Hugill R, Veitch JA, Klohr SE, Whitney JL, Manly SP (1999) Glucolipsin A and B, two new glucokinase activators produced by Streptomyces purpurogeniscleroticus and Nocardia vaccinii. J Antibiot 52:245–255.  https://doi.org/10.7164/antibiotics.52.245 CrossRefGoogle Scholar
  86. Ratledge C, Snow GA (1974) Isolation and structure of nocobactin NA, a lipid-soluble iron-binding compound from Nocardia asteroides. Biochem J 139:407–413CrossRefGoogle Scholar
  87. Reeve AM, Breazeale SD, Townsend CA (1998) Purification, characterization, and cloning of an S-adenosylmethionine- dependent 3-amino-3-carboxypropyltransferase in nocardicin biosynthesis. J Biol Chem 273:30695–30703CrossRefGoogle Scholar
  88. Roth A, Andrees S, Kroppenstedt RM, Harmsen D, Mauch H (2003) Phylogeny of the genus Nocardia based on reassessed 16S rRNA gene sequences reveals underspeciation and division of strains classified as Nocardia asteroides into three established species and two unnamed taxons. J Clin Microbiol 41:851–856CrossRefGoogle Scholar
  89. Sakagami H, Ishihara M, Hoshino Y, Ishikawa J, Mikami Y, Fukai T (2005) Cytotoxicity of nocobactins NA-a, NA-b and their ferric complexes assessed by semiempirical molecular orbital method. In Vivo 19:277–282Google Scholar
  90. Sakai K, Komaki H, Gonoi T (2015) Identification and functional analysis of the nocardithiocin gene cluster in Nocardia pseudobrasiliensis. PLoS One 10:e0143264.  https://doi.org/10.1371/journal.pone.0143264 CrossRefGoogle Scholar
  91. Sanchez-Herrera K, Sandoval H, Couble A, Mouniee D, Ramirez-Duran N, de Morillo MU, Serrano JA, Bergeron E, Boiron P, Rodríguez-Nava V (2012) Phenotypic and genotypic evaluation of 18 Nocardia isolates from human clinical samples in Mexico. J Mycol Med 22:1–7.  https://doi.org/10.1016/j.mycmed.2011.10.008 CrossRefGoogle Scholar
  92. Sawa T, Fukagawa Y, Homma I, Wakashiro T, Takeuchi T, Hori M, Komai T (1968) Metabolic conversion of formycin B to formycin A and to oxoformycin B in Nocardia interforma. J Antibiot 21:334–339.  https://doi.org/10.7164/antibiotics.21.334 CrossRefGoogle Scholar
  93. Seyedsayamdost MR (2014) High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci U S A 111:7266–7271.  https://doi.org/10.1073/pnas.1400019111 CrossRefGoogle Scholar
  94. Sharma P, Kalita MC, Thakur D (2016) Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52. Front Microbiol 7:347.  https://doi.org/10.3389/fmicb.2016.00347 CrossRefGoogle Scholar
  95. Shi A, Tao Z, Wei P, Zhao J (2016) Epidemiological aspects of heart diseases. Exp Ther Med 12:1645–1650.  https://doi.org/10.3892/etm.2016.3541 CrossRefGoogle Scholar
  96. Shigemori H, Tanaka Y, Yazawa K, Mikami Y, Kobayashi J (1996) Brasilinolide A, new immunosuppressive macrolide from actinomycete Nocardia brasiliensis. Tetrahedron 52:9031–9034.  https://doi.org/10.1016/0040-4020(96)00464-4 CrossRefGoogle Scholar
  97. Shigemori H, Komaki H, Yazawa K, Mikami Y, Nemoto A, Tanaka Y, Sasaki T, In Y, Ishida T, Kobayashi JI (1998) Brasilicardin A. A novel tricyclic metabolite with potent immunosuppressive activity from actinomycete Nocardia brasiliensis. J Org Chem 63:6900–6904.  https://doi.org/10.1021/jo9807114 CrossRefGoogle Scholar
  98. Shigemori H, Komaki H, Yazawa K, Mikami Y, Nemoto A, Tanaka Y, Kobayashi JI (1999) Biosynthesis of diterpenoid moiety of brasilicardin A via non-mevalonate pathway in Nocardia brasiliensis. Tetrahedron Lett 40:4353–4354.  https://doi.org/10.1016/S0040-4039(99)00689-9 CrossRefGoogle Scholar
  99. Shivlata L, Satyanarayana T (2015) Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Front Microbiol 6:1014.  https://doi.org/10.3389/fmicb.2015.01014 CrossRefGoogle Scholar
  100. Sohng JK, Yamaguchi T, Seong CN, Baik KS, Park SC, Lee HJ, Jang SY, Simkhada JR, Yoo JC (2008) Production, isolation and biological activity of nargenicin from Nocardia sp. CS682. Arch Pharm Res 31(10):1339–1345.  https://doi.org/10.1007/s12272-001-2115-0 CrossRefGoogle Scholar
  101. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416.  https://doi.org/10.1039/A909079G CrossRefGoogle Scholar
  102. Suenaga K, Kokubo S, Shinohara C, Tsuji T, Uemura D (1999) Structures of amamistatins A and B, novel growth inhibitors of human tumor cell lines from an actinomycete. Tetrahedron Lett 40:1945–1948.  https://doi.org/10.1016/S0040-4039(99)00050-7 CrossRefGoogle Scholar
  103. Tamura T, Matsuzawa T, Oji S, Ichikawa N, Hosoyama A, Katsumata H, Yamazoe A, Hamada M, Suzuki KI, Gonoi T, Fujita N (2012) A genome sequence-based approach to taxonomy of the genus Nocardia. Antonie Van Leeuwenhoek 102:481–491.  https://doi.org/10.1007/s10482-012-9780-5 CrossRefGoogle Scholar
  104. Tamura T, Ohji S, Ichikawa N, Hosoyama A, Yamazoe A, Hamada M, Komaki H, Shibata C, Matsuzawa T, Gonoi T, Suzuki KI (2018) Reclassification of Nocardia species based on whole genome sequence and associated phenotypic data. J Antibiot. 71(7):633-641  https://doi.org/10.1038/s41429-018-0043-1 CrossRefGoogle Scholar
  105. Tanaka Y, Gräfe U, Yazawa K, Mikami Y, Ritzau M (1997a) Nocardicyclins A and B: new anthracycline antibiotics produced by Nocardia pseudobrasiliensis. J Antibiot 50:822–827.  https://doi.org/10.7164/antibiotics.50.822 CrossRefGoogle Scholar
  106. Tanaka Y, Komaki H, Yazawa K, Mikami Y, Nemoto A, Tojyo T, Kadowaki K, Shigemori H, Kobayashi JI (1997b) Brasilinolide A, a new macrolide antibiotic produced by Nocardia brasiliensis: producing strain, isolation and biological activity. J Antibiot 50:1036–1041.  https://doi.org/10.7164/antibiotics.50.1036 CrossRefGoogle Scholar
  107. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029.  https://doi.org/10.1021/acssynbio.5b00038 CrossRefGoogle Scholar
  108. Townsend CA, Brown AM (1981) Biosynthetic studies of nocardicin A. J Am Chem Soc 103:2873–2874.  https://doi.org/10.1021/ja00400a069 CrossRefGoogle Scholar
  109. Townsend CA, Brown AM (1982) Nocardicin A biosynthesis: stereochemical course of monocyclic. beta-lactam formation. J Am Chem Soc 104:1748–1750.  https://doi.org/10.1021/ja00370a056 CrossRefGoogle Scholar
  110. Townsend CA, Brown AM (1983) Nocardicin A: biosynthetic experiments with amino acid precursors. J Am Chem Soc 105:913–918.  https://doi.org/10.1021/ja307710d CrossRefGoogle Scholar
  111. Townsend CA, Salituro GM (1984) Fate of [15 N]-p-hydroxyphenyl glycine in nocardicin a biosynthesis. J Chem Soc Chem Commun 0:1631–1632.  https://doi.org/10.1039/C39840001631 CrossRefGoogle Scholar
  112. Townsend CA, Brown AM, Nguyen LT (1983) Nocardicin A: stereochemical and biomimetic studies of monocyclic β-lactam formation. J Am Chem Soc 105:919–927.  https://doi.org/10.1021/ja00342a047 CrossRefGoogle Scholar
  113. Tsuda M, Sato H, Tanaka Y, Yazawa G, Mikami Y, Sasaki T, Kobayashi JI (1996) Brasiliquinones A-C, new cytotoxic benz[α]anthraquinones with an ethyl group at C-3 from actinomycete Nocardia brasiliensis. J Chem Soc Perkin Trans 1:1773–1775.  https://doi.org/10.1039/P19960001773 CrossRefGoogle Scholar
  114. Tsuda M, Nemoto A, Komaki H, Tanaka Y, Yazawa K, Mikami Y, Kobayashi JI (1997) Nocarasins A− C and brasiliquinone D, new metabolites from the actinomycete Nocardia brasiliensis. J Nat Prod 62:1640–1642.  https://doi.org/10.1021/np990265v CrossRefGoogle Scholar
  115. Tsuda M, Yamakawa M, Oka S, Tanaka Y, Hoshino Y, Mikami Y, Sato A, Fujiwara H, Ohizumi Y, Kobayashi JI (2005) Brasilibactin A, a cytotoxic compound from actinomycete Nocardia brasiliensis. J Nat Prod 68:462–464.  https://doi.org/10.1021/np0496385 CrossRefGoogle Scholar
  116. Tsukamoto M, Murooka K, Nakajima S, Abe S, Suzuki H, Hirano K, Kondo H, Kojiri K, Suda H (1997) BE-32030 A, B, C, D and E, new antitumor substances produced by Nocardia sp. A32030. J Antibiot 50:815–821.  https://doi.org/10.7164/antibiotics.50.815 CrossRefGoogle Scholar
  117. Tsukamura M (1977) Extended numerical taxonomy study of Nocardia. Int J Syst Bacteriol 27:311–323.  https://doi.org/10.1099/00207713-27-4-311 CrossRefGoogle Scholar
  118. Wohlleben W, Mast Y, Muth G, Röttgen M, Stegmann E, Weber T (2012) Synthetic biology of secondary metabolite biosynthesis in actinomycetes: engineering precursor supply as a way to optimize antibiotic production. FEBS Lett 586:2171–2176.  https://doi.org/10.1016/j.febslet.2012.04.025 CrossRefGoogle Scholar
  119. Yamamura H, Hayakawa M, Nakagawa Y, Tamura T, Kohno T, Komatsu F, Iimura Y (2005) Nocardia takedensis sp. nov., isolated from moat sediment and scumming activated sludge. Int J Syst Evol Microbiol 55:433–436.  https://doi.org/10.1099/ijs.0.63189-0 CrossRefGoogle Scholar
  120. Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10:625–633.  https://doi.org/10.1002/cbic.200800389 CrossRefGoogle Scholar
  121. Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, Yeo WL, Cobb RE, Enghiad B, Ang EL, Zhao H (2017) CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13:607–609.  https://doi.org/10.1038/nchembio.2341 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dipesh Dhakal
    • 1
    Email author
  • Anil Shrestha
    • 1
  • Nguyen Huy Thuan
    • 2
  • Vijay Rayamajhi
    • 1
  • Ravindra Mishra
    • 1
  • Rubin Thapa Magar
    • 1
  • Jae Kyung Sohng
    • 1
    Email author
  1. 1.Department of Life Science and Biochemical EngineeringSun Moon UniversityChungnamRepublic of Korea
  2. 2.Center for Molecular BiologyDuy Tan UniversityDanangVietnam

Personalised recommendations