DAPHNE: A Novel e-Health System for the Diagnosis and the Treatment of Parkinson’s Disease

  • Erika RoviniEmail author
  • Luca Santarelli
  • Dario Esposito
  • Carlo Maremmani
  • Filippo Cavallo
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 540)


Parkinson’s Disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. A standardised objective tool for PD diagnosis and management is still missing and the adopted monitoring approaches are suboptimal. The development of a technological solution implementing e-health systems is investigated in various research projects. In this paper we propose DAPHNE system, aimed to implement innovative and sustainable services for the early diagnosis, for the therapy and for the management of PD by using wearable devices, information and communication technologies (ICTs), such as mobile Health (mHealth) apps and Internet of things (IoT) protocols. To such a degree, DAPHNE successfully proposes an Ambient Assisted Living (AAL) solution that supports the clinicians in early and differential diagnosis, promotes a precision medicine approach by enabling an at-home monitoring service optimised according the patient’s needs, stimulates the self-management of patients and caregivers in the care path, significantly reduces healthcare costs in terms of diagnostic examinations/hospitalisation and, as major breakthrough, permits a PD diagnosis up to 7 years earlier than current methods, so maximising the drug therapy efficacy.


Parkinson’s disease Wearable sensors Integrated care e-Health AAL 


  1. 1.
    Olesen, J., Gustavsson, A., Svensson, M., Wittchen, H. U., & Jönsson, B. (2012). The economic cost of brain disorders in Europe. European Journal of Neurology, 19, 155–162. Scholar
  2. 2.
    Dorsey, E. R., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., Kieburtz, K., et al. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030.Google Scholar
  3. 3.
    Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. Lancet, 386, 896–912. Scholar
  4. 4.
    Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79, 368–376. Scholar
  5. 5.
    Wolters, E. C. (2008). Variability in the clinical expression of Parkinson’s disease. Journal of the Neurological Sciences, 266, 197–203.CrossRefGoogle Scholar
  6. 6.
    Gelb, D. J., Oliver, E., & Gilman, S. (1999). Criteria for the diagnosis of Parkinson’s disease. Archives of Neurology, 56, 33–39.CrossRefGoogle Scholar
  7. 7.
    Berg, D., Lang, A. E., Postuma, R. B., Maetzler, W., Deuschl, G., Gasser, T., et al. (2013). Changing the research criteria for the diagnosis of Parkinson’s disease: Obstacles and opportunities. Lancet Neurology, 12, 514–524. Scholar
  8. 8.
    Hughes, A. J., Ben-Shlomo, Y., Daniel, S. E., & Lees, A. J. (1992). UK Parkinson’s disease society brain bank clinical diagnostic criteria. Journal of Neurology, Neurosurgery and Psychiatry, 55, 181–184.CrossRefGoogle Scholar
  9. 9.
    Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez‐Martin, P., et al. (2008). Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders, 23, 2129–2170. Scholar
  10. 10.
    Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: Onset, progression, and mortality. Neurology, 17, 427–442. Scholar
  11. 11.
    Wicks, P., Stamford, J., Grootenhuis, M. A., Haverman, L., & Ahmed, S. (2014). Innovations in e-health. Quality of Life Research, 23, 195–203. Scholar
  12. 12.
    Sahyoun, A., Chehab, K., Al-madani, O., Aloul, F., & Sagahyroon, A. (2016). ParkNosis: Diagnosing Parkinson’s disease using mobile phones. In 18th International Conference on e-Health Networking, Applications and Services (Healthcom) (pp. 1–6). IEEE.Google Scholar
  13. 13.
    Cohen, S., Bataille, L. R., & Martig, A. K. (2016). Enabling breakthroughs in Parkinson’s disease with wearable technologies and big data analytics. mHealth, 2. Scholar
  14. 14.
    Zhao, Y., Heida, T., Van Wegen, E. E. H., Bloem, B. R., & Van Wezel, R. J. A. (2015). E-health support in people with Parkinson’s disease with smart glasses: A survey of user requirements and expectations in the Netherlands. Journal of Parkinson’s Disorder, 5, 369–378. Scholar
  15. 15.
    Cancela, J., Mascato, S. V., Gatsios, D., Rigas, G., Marcante, A., Gentile, G., et al. (2016). Monitoring of motor and non-motor symptoms of Parkinson’s disease through a mHealth platform. In 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 663–666). IEEE.Google Scholar
  16. 16.
    Espay, A. J., Bonato, P., Nahab, F. B., Maetzler, W., Dean, J. M., Klucken, J., et al. (2016). Technology in Parkinson’s disease: Challenges and opportunities. Movement Disorders, 31, 1272–1282. Scholar
  17. 17.
    Aquilano, M., Cavallo, F., Bonaccorsi, M., Esposito, R., Rovini, E., Filippi, M., et al. (2012). Ambient assisted living and ageing: Preliminary results of RITA project. In 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5823–5826). San Diego, CA, USA: IEEE.Google Scholar
  18. 18.
    Cavallo, F., Aquilano, M., Odetti, L., Arvati, M., & Carrozza, M. C. (2009). A first step toward a pervasive and smart ZigBee sensor system for assistance and rehabilitation. In IEEE International Conference on Rehabilitation Robotics, 2009 (ICORR 2009) (pp. 632–637).Google Scholar
  19. 19.
    Fearnley, J. M., & Lees, A. J. (1991). Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain, 114, 2283–2301.CrossRefGoogle Scholar
  20. 20.
    Morrish, P. K., Rakshi, J. S., Bailey, D. L., Sawle, G. V., & Brooks, D. J. (1998). Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. Journal of Neurology, Neurosurgery and Psychiatry, 64, 314–319. Scholar
  21. 21.
    Ponsen, M. M., Stoffers, D., Wolters, E. C., Booij, J., & Berendse, H. W. (2010). Olfactory testing combined with dopamine transporter imaging as a method to detect prodromal Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 81, 396–399. Scholar
  22. 22.
    Maremmani, C., Rossi, G., Tambasco, N., Fattori, B., Pieroni, A., Ramat, S., et al. (2012). The validity and reliability of the Italian Olfactory Identification Test (IOIT) in healthy subjects and in Parkinson’s disease patients. Parkinsonism and Related Disorders, 18, 788–793. Scholar
  23. 23.
    Connolly, B. S., & Lang, A. E. (2014). Pharmacological treatment of Parkinson disease. JAMA, 311, 1670–1683. Scholar
  24. 24.
    De La Fuente-Fernández, R. (2012). Role of DaTSCAN and clinical diagnosis in Parkinson disease. Neurology, 78, 696–701. Scholar
  25. 25.
    Cavallo, F., Esposito, D., Rovini, E., Aquilano, M., Carrozza, M. C., Dario, P., et al. (2013). Preliminary evaluation of SensHand V1 in assessing motor skills performance in Parkinson disease. In 13th International Conference on Rehabilitation Robotics (ICORR) (pp. 1–6). Seattle, WA, USA: IEEE.Google Scholar
  26. 26.
    Maremmani, C., Bongioanni, P., Cavallo, F., Esposito, D., Rovini, E., Aquilano, M., et al. (2013). Preliminary evaluation of Sensorfoot V1 and Senshand V1 in assessing motor skills performance of Parkinson’s disease patients. Journal of the Neurological Sciences, 333, e67.CrossRefGoogle Scholar
  27. 27.
    Rovini, E., Esposito, D., Maremmani, C., Bongioanni, P., & Cavallo, F. (2014). Using wearable sensor systems for objective assessment of Parkinson’s disease. In 20th IMEKO TC4 International Symposium and 18th International Workshop on ADC Modelling and Testing, Benevento, Italy (pp. 862–867).Google Scholar
  28. 28.
    Rovini, E., Esposito, D., Maremmani, C., Bongioanni, P., & Cavallo, F. (2015). Empowering patients in self-management of Parkinson’s disease through cooperative ICT systems.Google Scholar
  29. 29.
    Cavallo, F., Maremmani, C., Esposito, D., Rovini, E., Dario, P., & Carrozza, M. C. (2014). Method and related apparatus for monitoring biomechanical performances of human limbs.Google Scholar
  30. 30.
    Sarkar, S., Raymick, J., & Imam, S. (2016). Neuroprotective and therapeutic strategies against Parkinson’s disease: Recent perspectives. International Journal of Molecular Sciences, 17. Scholar
  31. 31.
    Reid, R. J., Coleman, K., Johnson, E. A., Fishman, P. A., Hsu, C., Soman, M. P., et al. (2010). The Group Health medical home at year two: Cost savings, higher patient satisfaction, and less burnout for providers. Health Affairs, 29, 835–843. Scholar
  32. 32.
    de Lau, L. M. L., & Breteler, M. M. B. (2006). Epidemiology of Parkinson’s disease. Lancet Neurology, 5, 525–535. Scholar
  33. 33.
    El-Tallawy, H. N., Farghaly, W. M., Shehata, G. A., Rageh, T. A., Hakeem, N. M. A., Al Hamed, M. A., et al. (2013). Prevalence of Parkinson’s disease and other types of Parkinsonism in Al Kharga district, Egypt. Neuropsychiatric Disease and Treatment, 9.Google Scholar
  34. 34.
    von Campenhausen, S., Winter, Y., Rodrigues e Silva, A., Sampaio, C., Ruzicka, E., Barone, P., et al. (2011). Costs of illness and care in Parkinson’s Disease: An evaluation in six countries. European Neuropsychopharmacology, 21, 180–191. Scholar
  35. 35.
    Liou, H. H., Wu, C. Y., Chiu, Y. H., Yen, A. M. F., Chen, R. C., Chen, T. F., et al. (2008). Natural history and effectiveness of early detection of Parkinson’s disease: Results from two community-based programmes in Taiwan (KCIS no. 11). Journal of Evaluation in Clinical Practice, 14, 198–202. Scholar
  36. 36.
    Agarwal, S., LeFevre, A. E., Lee, J., L’Engle, K., Mehl, G., Sinha, C., et al. (2016). WHO mHealth Technical Evidence Review Group: Guidelines for reporting of health interventions using mobile phones: Mobile Health (mHealth) evidence reporting and assessment (mERA) checklist. BMJ, 352, i1174. Scholar
  37. 37.
    Mehl, G., & Labrique, A. (2014). Prioritizing integrated mHealth strategies for universal health coverage. Science (80-.), 345, 1284–1287. Scholar
  38. 38.
    Ricciardi, L., Mostashari, F., Murphy, J., Daniel, J. G., & Siminerio, E. P. (2013). A national action plan to support consumer engagement via e-health. Health Affairs, 32, 376–384. Scholar
  39. 39.
    InsightExpress: Digital Impact on Customer Experience (2013).Google Scholar
  40. 40.
    Chiuchisan, I., Chiuchisan, I., & Dimian, M. (2015) Internet of things for e-health: An approach to medical applications. In International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM) (pp. 1–5). IEEE.Google Scholar
  41. 41.
    Chiuchisan, I., & Geman, O. (2014). An approach of a decision support and home monitoring system for patients with neurological disorders using internet of things concepts. WSEAS Transaction on Systems, 13, 460–469.Google Scholar
  42. 42.
    Dorsey, E. R., Vlaanderen, F. P., Engelen, L. J. L. P. G., Kieburtz, K., Zhu, W., Biglan, K. M., et al. (2016). Moving Parkinson care to the home. Movement Disorder, 31, 1258–1262. Scholar
  43. 43.
    Nocera, J., Horvat, M., & Ray, C. T. (2009). Effects of home-based exercise on postural control and sensory organization in individuals with Parkinson disease. Parkinsonism and Related Disorders, 15, 742–745. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The BioRobotics Institute, Scuola Superiore Sant’AnnaPontederaItaly
  2. 2.U.O. NeurologiaOspedale delle Apuane (AUSL Toscana Nord Ovest)MassaItaly

Personalised recommendations