Advertisement

A Wearable Device to Support the Pull Test in Parkinson Disease

  • B. AndòEmail author
  • S. Baglio
  • V. Marletta
  • A. Pistorio
  • V. Dibilio
  • G. Mostile
  • A. Nicoletti
  • M. Zappia
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 540)

Abstract

The Pull Test is a common practice to assess the postural instability of patients with Parkinson Disease. Postural instability is a serious issue for elderly and people with neurological disease, which can cause falls. The implementation of the Pull Test consists in observing the user response after providing a tug to the patients’ shoulders, in order to displace the center of gravity from its neutral position. The validity of the test can be compromised by a nonstandard backward tug provided to the patient. The solution proposed in this paper consists of a low cost multisensor system allowing an objective estimation of the input solicitation. Moreover, the system provides supplementary information on the user postural instability, by means of a set of features extracted from the user stabilogram, which are useful to assess the user response. A wide set of experiments have been performed to assess the system capability to provide a rough classification between stable and unstable behaviors. Results obtained demonstrate the validity of the approach proposed.

References

  1. 1.
    10 facts on ageing and health. http://www.who.int/features/factfiles/ageing/en/.
  2. 2.
    Il futuro demografico del paese - Previsioni regionali della popolazione residente al 2065, https://www.istat.it/it/files/2018/05/previsioni_demografiche.pdf.
  3. 3.
    Andò, B. (2006). Sensors that provide security for people with depressed receptors. IEEE Instrumentation and Measurement Magazine, 9(2), 56–61.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Andò, B. (2008). A smart multisensor approach to assist blind people in specific urban navigation tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 592–594.CrossRefGoogle Scholar
  5. 5.
    Andò, B., & Graziani, S. (2009). Multisensor strategies to assist blind people: A clear-path indicator. IEEE Transactions on Instrumentation and Measurement, 58(8), 2488–2494.CrossRefGoogle Scholar
  6. 6.
    Andò, B., Baglio, S., La Malfa, S., & Marletta, V. (2011). A sensing architecture for mutual user-environment awareness case of study: A mobility aid for the visually impaired. IEEE Sensors Journal, 11(3), art. no. 5580002, 634–640.CrossRefGoogle Scholar
  7. 7.
    Supporting an Ageing Population, IET Sectors Insights, E6D16025/0117/PDF. http://www.theiet.org/sectors/design-production/topics/design/articles/ageing-population.cfm.
  8. 8.
    Cameron, I. D., Gillespie, L. D., Robertson, M. C., Murray, G. R., Hill, K. D. Cumming, R. G., & Kerse, N. (2012). Interventions for preventing falls in older people in care facilities and hospitals (Review). In The cochrane library (Issue 12). New York: Wiley.Google Scholar
  9. 9.
    Slips, trips and falls in hospital, 3rd report from the Patient Safety Observatory. (2007). NPSA.Google Scholar
  10. 10.
    National Institute for Health and Clinical Excellence. Falls in older people: assessing risk and prevention (2013). Available at: http://www.nice.org.uk/guidance/cg161.
  11. 11.
    The Falls Management Program: A Quality Improvement Initiative for Nursing Facilities. October 2014. Agency for Healthcare Research and Quality, Rockville, MD. http://www.ahrq.gov/professionals/systems/long-term-care/resources/injuries/fallspx/index.html.
  12. 12.
    Module 3: Falls Prevention and Management. (2014). Agency for Health Research and Quality, Rockville.Google Scholar
  13. 13.
    Andò, B., Baglio, S., Lombardo, C. O., & Marletta, V. (2015). A multi-user assistive system for the user safety monitoring in care facilities. In 2015 IEEE International Workshop on Measurements and Networking, M&N 2015 - Proceedings 7322983 (pp. 112–116).Google Scholar
  14. 14.
    Schwendimann, R. (2006). Patient falls: A key issue in patient safety in hospitals, PhD dissertation. Available at: http://edoc.unibas.ch/495/1/DissB_7645.pdf.
  15. 15.
    Halfon, P., Eggli, Y., Van_Melle, G., & Vagnair, A. (2001). Risk of falls for hospitalized patients: A predictive model based on routinely available data. Journal of Clinical Epidemiology, 54(12), 1258–1266.CrossRefGoogle Scholar
  16. 16.
    Neuhauser, H. K. (2007). Epidemiology of vertigo. Current Opinion in Neurology, 20, 40–46.CrossRefGoogle Scholar
  17. 17.
    Jankovic, J. (2005). Motor fluctuations and dyskinesias in Parkinson’s disease: Clinical manifestations. Movement Disorders, 20(Suppl 11), S11–S16.CrossRefGoogle Scholar
  18. 18.
    Igual, R., Medrano, C., & Plaza, I. (2013). Challenges issues and trends in fall detection systems. BioMedical Engineering OnLine, 12(66). Available from: http://www.biomedical-engineering-online.com/content/12/1/66.CrossRefGoogle Scholar
  19. 19.
    Andò, B., Baglio, S., Lombardo, C. O., Marletta, V., & Pergolizzi, E. A. (2015). Fall & ADL detection methodologies for AAL. Lecture Notes in Electrical Engineering, 319, 427–431.CrossRefGoogle Scholar
  20. 20.
    Andò, B., Baglio, S., Lombardo, C. O., & Marletta, V. (2015). An event polarized paradigm for ADL detection in AAL context. IEEE Transactions on Instrumentation and Measurement, 64(7), 1814–1825.CrossRefGoogle Scholar
  21. 21.
    Andò, B., Baglio, S., Lombardo, C. O., & Marletta, V. (2016). A multisensor data-fusion approach for ADL and fall classification. IEEE Transactions on Instrumentation and Measurement, 65(9), 1960–1967.CrossRefGoogle Scholar
  22. 22.
    Guideline for the prevention of falls in older persons. (2001, May). American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. Journal of the American Geriatrics Society, 49(5), 664–72.CrossRefGoogle Scholar
  23. 23.
    Andò, B., Baglio, S., & Marletta, V. (2014). Intelligent sensing solutions for AAL. Lecture Notes in Electrical Engineering, 162, 321–324.CrossRefGoogle Scholar
  24. 24.
    Lockhart, T., Frame, C., Soangra, R., & Lach, J. (2014). Fall risk prediction using wearable wireless sensors, SPIE, 1–3.Google Scholar
  25. 25.
    Andò, B., Baglio, S., Lombardo, C. O., Marletta, V., Pergolizzi, E. A., Pistorio, A., et al. (2015). ADL detection for the active ageing of elderly people. Biosystems and Biorobotics, 11, 287–294.CrossRefGoogle Scholar
  26. 26.
    Socha, V., Schlenker, J., & Kutilek, P. (2015, September). Assessment of postural instability in patients with a neurological disorder using a tri-axial accelerometer. Acta Polytechnica.Google Scholar
  27. 27.
    Howcroft, J., Kofman, J., & Lemaire, E. D. (2013). Review of fall risk assessment in geriatric populations using inertial sensors. Journal of Neuro Engineering and Rehabilitation, 10, 91.CrossRefGoogle Scholar
  28. 28.
    Collins, J. J., & De Luca, C. J. (1992, December). Open-loop and closed-loop control of posture: A random-walk analysis of center-of-pressure trajectories. Experimental Brain Research.Google Scholar
  29. 29.
    Crea, S., De Rossi, S. M. M., Donati, M., & Vitiello, N. (2014). A wireless flexible sensorized insole for gait analysis. Sensors, 14, 1073–1093.CrossRefGoogle Scholar
  30. 30.
    Thapa, P. B., Gideon, P., Brockman, K. G., Fought, R. L., & Ray, W. A. (1996). Clinical and biomechanical measures of balance as fall predictors in ambulatory nursing home resident. Journal of Gerontology: Medical Sciences, 51(5), M239–M246.Google Scholar
  31. 31.
    Norris, J. A., Marsh, A. P., Smith, I. J., Kohut, R. I., & Miller, M. E. Ability of static and statistical mechanics posturographic measures to distinguish between age and fall risk.Google Scholar
  32. 32.
    Priplata, A., Niemi, J., Salen, M., Harry, J., Lipsitz, L. A., & Collins, J. (2002 November 13). Noise-enhanced human balance control. Physics Review, 89(23).Google Scholar
  33. 33.
    Corbellini, S., Ramella, C., Fallauto, C., Pirola, M., Stassi, S., & Canavese, G. (2015). Low-cost wearable measurement system for continuous real-time pedobarography. In 2015 IEEE International Symposium on Medical Measurement and Applications (MeMeA) (pp. 639–644).Google Scholar
  34. 34.
    Mancini, M., & Horak. F. B. (2010, June). The relevance of clinical balance assessment tools to differentiate balance deficits. European Journal of Physical and Rehabilitation Medicine, 46(2), 239–248.Google Scholar
  35. 35.
    Andò, B., Baglio, S., Lombardo, C., Marletta, V., Dibilio, V., Mostile, G., …, Zappia, M. (2016). A multisensor approach to perform instrumented postural instability tests for patient with parkinson disease. In IEEE Sensors Applications Symposium (SAS) (pp. 1–5), Catania, Italy, April 20–22, 2016.Google Scholar
  36. 36.
    Andò, B., Baglio, S., Marletta, V., Pistorio, A., Dibilio, V., Mostile, G., …, Zappia, M. (2017). A multisensor architecture for the assessment of postural sway in elderly and people with neurological disease. In IEEE Sensors Applications Symposium (SAS) (pp. 1–5), Glassboro, NJ, USA, March 13–15, 2017.Google Scholar
  37. 37.
    Andò, B., Baglio, S., Marletta, V., Pistorio, A., Dibilio, V., Mostile, G., …, Zappia, M. A wearable device to support the pull test for postural instability assessment in Parkinson Disease. IEEE Transactions on Instrumentation and Measurement, 67(1), 218–228.CrossRefGoogle Scholar
  38. 38.
    Guideline for the prevention of falls in older persons. American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. Journal of the American Geriatrics Society, 49(5), 664–672.Google Scholar
  39. 39.
    Hunt, A. L., & Sethi, K. D. (2006). The pull test: A history. Movement Disorders, 21(7), 894–899.CrossRefGoogle Scholar
  40. 40.
    Pasluosta, C. F., Barth, J., Gassner, H., Klucken, J., & Eskofier, B. M. (2015). Pull test estimation in Parkinson’s disease patients using wearable sensor technology. IEEE Engineering in Medicine and Biology Society, 2015, 3109–3112.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • B. Andò
    • 1
    Email author
  • S. Baglio
    • 1
  • V. Marletta
    • 1
  • A. Pistorio
    • 1
  • V. Dibilio
    • 2
  • G. Mostile
    • 2
  • A. Nicoletti
    • 2
  • M. Zappia
    • 2
  1. 1.DIEEI-University of CataniaCataniaItaly
  2. 2.Clinica Neurologica, AOU Policlinico Vittorio EmanueleCataniaItaly

Personalised recommendations