Advertisement

Characteristics and Applications of Pulsed Laser-Induced Single-Event Effects

  • Dale McMorrowEmail author
Chapter

Abstract

Carrier generation induced by pulsed-laser excitation has become an essential tool for the investigation of single-event effects (SEEs) of micro- and nano-electronic structures. The qualitative capabilities of this approach include, among others, sensitive node identification, radiation hardened circuit verification, basic mechanisms investigations, model validation and calibration, screening devices for space missions, and fault injection to understand error propagation in complex circuits. Recent effort has built upon the success enabled by these qualitative benefits, and has focused on putting the laser SEE approaches on a more quantitative basis. This chapter presents the basic principles associated with the single-photon and two-photon excitation processes, as well as numerous case studies.

Keywords

Single-event transient SET Two-photon absorption Single-event latch-up Nonlinear optics Radiation hardening Hardened by design Screening Charge collection ASET DSET 

Notes

Acknowledgments

This work was supported by the Defense Threat Reduction Agency and the Office of Naval Research.

References

  1. 1.
    A.H. Johnston, M.P. Baze, Experimental methods for determining latchup paths in integrated circuits. IEEE Trans Nucl Sci 32, 4260–4265 (1985)CrossRefGoogle Scholar
  2. 2.
    S.P. Buchner, D. Wilson, K. Kang, D. Gill, J.A. Mazer, W.D. Raburn, A.B. Campbell, A.R. Knudson, Laser simulation of single event upsets. IEEE Trans. Nucl. Sci. 34, 1227 (1987)CrossRefGoogle Scholar
  3. 3.
    S. Buchner, A. Knudson, K. Kang, A.B. Campbell, Charge collection from focused picosecond laser pulses. IEEE Trans. Nucl. Sci. 35, 1517–1522 (1988)CrossRefGoogle Scholar
  4. 4.
    D. McMorrow, A.R. Knudson, A.B. Campbell, Fast charge collection in GaAs MESFETs. IEEE Trans. Nucl. Sci. 37, 1902–1908 (1990)CrossRefGoogle Scholar
  5. 5.
    S. Buchner, Κ. Kang, W.J. Stapor, A.B. Campbell, A.R. Knudson, P. McDonald, S. Rivet, Pulsed laser-induced SEU in integrated circuits: a practical method for hardness assurance testing. IEEE Trans. Nucl. Sci. 37, 1825–1831 (1990)CrossRefGoogle Scholar
  6. 6.
    D. McMorrow, J.S. Melinger, A.R. Knudson, A.B. Campbell, T. Weatherford, L.H. Tran, W. Curtice, Picosecond charge-collection dynamics in GaAs MESFETs. IEEE Trans. Nucl. Sci. 39, 1657–1664 (1992)CrossRefGoogle Scholar
  7. 7.
    P. Fouillat, Y. Danto, J.P. Dom, Localization and characterization of latch-up sensitive areas using a laser beam: influence on design rules of ICs in CMOS technology. Qual Reliab Eng Int 9, 477–482 (1993)CrossRefGoogle Scholar
  8. 8.
    S. Buchner, K. Kang, D. Krening, G. Lannan, R. Schneiderwind, Dependence of the SEU window of vulnerability of a logic circuit on magnitude of deposited charge. IEEE Trans. Nucl. Sci. 40, 1853–1857 (1993)CrossRefGoogle Scholar
  9. 9.
    D. McMorrow, J.S. Melinger, N. Thantu, A.B. Campbell, T.R. Weatherford, Charge-collection mechanisms of heterostructure FETs. IEEE Trans. Nucl. Sci. 41, 2055–2062 (1994)CrossRefGoogle Scholar
  10. 10.
    J.S. Melinger, S. Buchner, D. McMorrow, W.J. Stapor, T.R. Weatherford, A.B. Campbell, Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies. IEEE Trans. Nucl. Sci. 41, 2574–2584 (1994)CrossRefGoogle Scholar
  11. 11.
    S.C. Moss, S.D. LaLumondiere, J.R. Scarpulla, K.P. MacWilliams, W.R. Crain, R. Koga, Correlation of picosecond laser-induced Latchup and energetic particle-induced Latchup in CMOS test structures. IEEE Trans. Nucl. Sci. 42, 1948–1955 (1995)CrossRefGoogle Scholar
  12. 12.
    P. Fouillat, H. Lapuyade, A. Touboul, J.P. Dom, R. Gaillard, Numerical modeling of mechanisms involved in latchup triggering by a laser beam. IEEE Trans. Nucl. Sci. 43, 944–995 (1996)CrossRefGoogle Scholar
  13. 13.
    S. Buchner, D. McMorrow, J. Melinger, A.B. Campbell, Laboratory tests for single-event effects. IEEE Trans. Nucl. Sci. 43, 678 (1996)CrossRefGoogle Scholar
  14. 14.
    S. Buchner, M. Baze, D. Brown, D. McMorrow, J. Melinger, Comparison of error rates in combinational and sequential logic. IEEE Trans. Nucl. Sci. 44, 2209–2216 (1997)CrossRefGoogle Scholar
  15. 15.
    A.I. Chumakov, A.N. Egorov, O.B. Mavritsky, A.Y. Nikiforov, A.V. Yanenko, Single-event latch-up threshold estimation based on local laser dose rate results. IEEE Trans. Nucl. Sci. 44, 2034 (1997)CrossRefGoogle Scholar
  16. 16.
    J.S. Melinger, D. McMorrow, A.B. Campbell, S. Buchner, L.H. Tran, A.R. Knudson, W.R. Curtice, Pulsed laser-induced single event upset and charge collection measurements as a function of optical penetration depth. J. Appl. Phys. 84, 690–703 (1998)CrossRefGoogle Scholar
  17. 17.
    S. Buchner, T. Turflinger, L. Tran, D. McMorrow, Single Event Effects in Resolver-to-Digital Converters. IEEE Trans. Nuc. Sci., 46, 1445–1452 (1999)CrossRefGoogle Scholar
  18. 18.
    V. Pouget, D. Lewis, H. Lapuyade, R. Briand, P. Fouillat, L. Sarger, M.C. Calvet, Validation of radiation hardened designs by pulsed laser testing and SPICE analysis. Microelectron. Reliab. 39, 931–935 (1999)CrossRefGoogle Scholar
  19. 19.
    D. McMorrow, J.S. Melinger, S. Buchner, T. Scott, R.D. Brown, N.F. Haddad, Application of pulsed laser for evaluation and optimization of SEU-hard designs. IEEE Trans. Nucl. Sci. 47, 559–565 (2000)CrossRefGoogle Scholar
  20. 20.
    S. Duzellier, D. Falguère, L. Guibert, V. Pouget, P. Fouillat, R. Ecoffet, Application of laser testing in study of SEE mechanisms in 16-Mbit DRAMs. IEEE Trans. Nucl. Sci. 47, 2302–2399 (2000)CrossRefGoogle Scholar
  21. 21.
    D. Lewis, V. Pouget, F. Beaudoin, P. Perdu, H. Lapuyade, P. Fouillat, A. Touboul, Backside laser testing of ICs for SET sensitivity evaluation. IEEE Trans. Nucl. Sci. 48, 2193–2201 (2001)CrossRefGoogle Scholar
  22. 22.
    S.D. LaLumondiere, R. Koga, J.V. Osborn, D.C. Mayer, R.C. Lacoe, S.C. Moss, Wavelength dependence of transient laser-induced latchup in epi-CMOS test structures. IEEE Trans. Nucl. Sci. 49, 3059–3066 (2002)CrossRefGoogle Scholar
  23. 23.
    R. Pease, A. Sternberg, Y. Boulghassoul, L. Massengill, S. Buchner, D. McMorrow, D. Walsh, G. Hash, S. LaLumondiere, S. Moss, Comparison of SETs in bipolar linear circuits generated with an ion microbeam, laser light, and circuit simulation. IEEE Trans. Nucl. Sci. 49, 3163–3170 (2002)CrossRefGoogle Scholar
  24. 24.
    A.L. Sternberg, L.W. Massengill, S. Buchner, R.L. Pease, Y. Boulghassoul, M. Savage, D. McMorrow, R.A. Weller, The role of parasitic elements in the single-event transient response of linear circuits. IEEE Trans. Nucl. Sci. 49, 3115–3120 (2002)CrossRefGoogle Scholar
  25. 25.
    S. Buchner, D. McMorrow, A. Sternberg, L. Massengill, R.L. Pease, M. Maher, Single-event transient (SET) characterization of an LM119 voltage comparator: an approach to SET model validation using a pulsed laser. IEEE Trans. Nucl. Sci. 49, 1502–1508 (2002)CrossRefGoogle Scholar
  26. 26.
    V. Pouget, D. Lewis, P. Fouillat, Time-resolved scanning of integrated circuits with a pulsed laser: application to transient fault injection in an ADC. IEEE Trans Instrum. Meas. 53, 1227–1231 (2004)CrossRefGoogle Scholar
  27. 27.
    S. Buchner, D. McMorrow, C. Poivey, J. Howard, Y. Boulghassoul, L. Massengill, R. Pease, M. Savage, Comparison of single-event transients induced in an operational amplifier (LM124) by pulsed laser light and a broad beam of heavy ions. IEEE Trans. Nucl. Sci. 51, 2776–2781 (2004)CrossRefGoogle Scholar
  28. 28.
    F. Miller, N. Buard, T. Carriere, R. Dufayel, R. Gaillard, P. Poirot, J.-M. Palau, B. Sagnes, P. Fouillat, Effects of beam spot size on the correlation between laser and heavy ion SEU testing. IEEE Trans. Nucl. Sci. 51, 3708–3715 (2004)CrossRefGoogle Scholar
  29. 29.
    V. Ferlet-Cavrois, P. Paillet, D. McMorrow, A. Torres, M. Gaillardin, J.S. Melinger, A.R. Knudson, A.B. Campbell, J.R. Schwank, G. Vizkelethy, M.R. Shaneyfelt, K. Hirose, O. Faynot, C. Jahan, L. Tosti, Direct measurement of transient pulses induced by laser and heavy ion irradiation in deca-nanometer devices. IEEE Trans. Nucl. Sci. 52, 2104–2113 (2005)CrossRefGoogle Scholar
  30. 30.
    F. Miller, A. Luu, F. Prud’homme, P. Poirot, R. Gaillard, N. Buard, T. Carrière, Characterization of single-event burnout in power MOSFET using backside laser testing. IEEE Trans. Nucl. Sci. 53, 3145–3152 (2006)CrossRefGoogle Scholar
  31. 31.
    T.D. Loveless, L.W. Massengill, B.L. Bhuva, W.T. Holman, R.A. Reed, D. McMorrow, J.S. Melinger, P. Jenkins, A single-event-hardened phase-locked loop fabricated in 130 nm CMOS. IEEE Trans. Nucl. Sci. 54, 2012–2020 (2007)CrossRefGoogle Scholar
  32. 32.
    V. Ferlet-Cavrois, P. Paillet, D. McMorrow, N. Fel, J. Baggio, S. Girard, O. Duhamel, J.S. Melinger, M. Gaillardin, J.R. Schwank, P.E. Dodd, M.R. Shaneyfelt, J.A. Felix, New insights into single event transient propagation in chains of inverters—evidence for propagation-induced pulse broadening. IEEE Trans. Nucl. Sci. 54, 2338–2346 (2007)CrossRefGoogle Scholar
  33. 33.
    V. Ferlet-Cavrois, V. Pouget, D. McMorrow, J.R. Schwank, N. Fel, F. Essely, R.S. Flores, P. Paillet, M. Gaillardin, D. Kobayashi, S. Girard, J.S. Melinger, O. Duhamel, P.E. Dodd, M.R. Shaneyfelt, Investigation of the propagation induced pulse broadening (PIPB) effect on single event transients in SOI and bulk inverter chains. IEEE Trans. Nucl. Sci. 55, 2842–2853 (2008)CrossRefGoogle Scholar
  34. 34.
    N. Kanyogoro, S. Buchner, D. McMorrow, H. Hughes, M.S. Liu, A. Hurst, C. Carpasso, A new approach for single-event effects testing with heavy ion and pulsed-laser irradiation: CMOS/SOI SRAM substrate removal. IEEE Trans. Nucl. Sci. 58, 3414–3418 (2010)Google Scholar
  35. 35.
    T.D. Loveless, L.W. Massengill, W.T. Holman, B.L. Bhuva, D. McMorrow, J.H. Warner, A generalized linear model for single event transient propagation in phase-locked loops. IEEE Trans Nucl Sci 57, 2933–2947 (2010)CrossRefGoogle Scholar
  36. 36.
    E. Faraud, V. Pouget, K. Shao, C. Larue, F. Darracq, D. Lewis, A. Samaras, F. Bezerra, E. Lorfevre, R. Ecoffet, Investigation on the SEL sensitive depth of an SRAM using linear and two-photon absorption laser testing. IEEE Trans. Nucl. Sci. 58, 2637–2643 (2011)CrossRefGoogle Scholar
  37. 37.
    F. El-Mamouni, E.X. Zhang, N.D. Pate, N. Hooten, R.D. Schrimpf, R.A. Reed, K.F. Galloway, D. McMorrow, J. Warner, E. Simoen, C. Claeys, A. Griffoni, D. Linten, G. Vizkelethy, Laser-and heavy ion-induced charge collection in bulk FinFETs. IEEE Trans. Nucl. Sci. 58, 2563–2569 (2011)CrossRefGoogle Scholar
  38. 38.
    S.P. Buchner, F. Miller, V. Pouget, D.P. McMorrow, Pulsed-laser testing for single-event effects investigations. IEEE Trans. Nucl. Sci. 60, 1852–1875 (2013)CrossRefGoogle Scholar
  39. 39.
    D. McMorrow, A. Khachatrian, N.J.-H. Roche, J.H. Warner, S.P. Buchner, N. Kanyogoro, J.S. Melinger, V. Pouget, C. Larue, A. Hurst Jr., D. Kagey, Single-event upsets in substrate-etched CMOS SOI SRAMs using ultraviolet optical pulses with sub-micrometer spot size. IEEE Trans. Nucl. Sci. 60, 4184–4191 (2013)CrossRefGoogle Scholar
  40. 40.
    D. McMorrow, W.T. Lotshaw, J.S. Melinger, S. Buchner, R.L. Pease, Subbandgap laser-induced single event effects: carrier generation via two-photon absorption. IEEE Trans. Nucl. Sci. 49, 3002–3008 (2002)CrossRefGoogle Scholar
  41. 41.
    J.M. Hales, D. McMorrow, N.J.H. Roche, A. Khachatrian, J.H. Warner, S.P. Buchner, J.S. Melinger, J.W. Perry, W.T. Lotshaw, V. Dubikovsky, Simulation of light-matter interaction and two-photon absorption induced charge deposition by ultrashort optical pulses in silicon. IEEE Trans. Nucl. Sci. 61, 3504–3511 (2014)CrossRefGoogle Scholar
  42. 42.
    D.I. Kovsh, S. Yang, D.J. Hagan, E.W. Van Stryland, Nonlinear optical beam propagation for optical limiting. Appl. Opt. 38, 5168–5180 (1999)CrossRefGoogle Scholar
  43. 43.
    D.G. Mavis, P.H. Eaton, Soft error rate mitigation techniques for modern microcircuits, in Proceedings of the International Reliability Physics Symposium, 2002, pp. 216–225Google Scholar
  44. 44.
    P.E. Dodd, M.R. Shaneyfelt, J.A. Felis, J.R. Schwank, Production and propagation of single-event transients in high-speed digital logic. ICs. IEEE Trans. Nucl. Sci. 51, 3278–3284 (2004)CrossRefGoogle Scholar
  45. 45.
    T.D. Loveless, J.S. Kauppila, S. Jagannathan, D.R. Ball, J.D. Rowe, N.J. Gaspard, N.M. Atkinson, R.W. Blaine, T.R. Reece, J.R. Ahlbin, T.D. Haeffner, M.L. Alles, W.T. Holman, B.L. Bhuva, L.W. Massengill, On-chip measurement of single-event transients in a 45 nm silicon-on-insulator technology. IEEE Trans. Nucl. Sci. 59, 2749–2755 (2012)CrossRefGoogle Scholar
  46. 46.
    D. McMorrow, S. Buchner, M. Baze, B. Bartholet, R. Katz, M. O’Bryan, C. Poivey, K.A. LaBel, R. Ladbury, M. Maher, F.W. Sexton, Laser-induced latchup screening and mitigation in CMOS devices. IEEE Trans. Nucl. Sci. 53, 1819–1824 (2006)CrossRefGoogle Scholar
  47. 47.
    P.J. McNulty, W.J. Beauvais, R.A. Reed, D.R. Roth, E.G. Stassinopoulos, G.J. Brucker, Charge collection at large angles of incidence. IEEE Trans. Nucl. Sci. 39, 1622–1629 (1992)CrossRefGoogle Scholar
  48. 48.
    V. Ferlet-Cavrois, P. Paillet, D. McMorrow, J.S. Melinger, A.B. Campbell, M. Gaillardin, O. Faynot, O. Thomas, G. Barna, B. Giffard, Analysis of the transient response of high performance 50-nm partially depleted SOI transistors using a laser probing technique. IEEE Trans. Nucl. Sci. 53, 1825–1833 (2006)CrossRefGoogle Scholar
  49. 49.
    D. McMorrow, V. Ferlet-Cavrois, P. Paillet, O. Duhamel, J. Baggio, J.B. Boos, J.S. Melinger, Transient response of semiconductor electronics to ionizing radiation. Recent developments in charge-collection measurement. IEEE Trans. Nucl. Sci. 54, 1010–1017 (2007)CrossRefGoogle Scholar
  50. 50.
    T.D. England, R. Arora, Z.E. Fleetwood, N.E. Lourenco, K.A. Moen, A.S. Cardoso, D. McMorrow, N.J.-H. Roche, J.H. Warner, S.P. Buchner, P. Paki, A.K. Sutton, G. Freeman, J.D. Cressler, An investigation of single event transient response in 45-nm and 32-nm SOI RF-CMOS devices and circuits. IEEE Trans. Nucl. Sci. 60(6), 4405–4411 (2013)CrossRefGoogle Scholar
  51. 51.
    N.E. Lourenco, M.T. Wachter, Z.E. Fleetwood, A. Ildefonso, J.H. Warner, N.J. Roche, A. Khachtrian, D. McMorrow, S. Buchner, H. Itsuji, The impact of technology scaling on the single-event transient response of SiGe HBTs. IEEE Trans. Nucl. Sci. 64, 406–414 (2017)CrossRefGoogle Scholar
  52. 52.
    K. Ni, A.L. Sternberg, E.X. Zhang, J.A. Kozub, R. Jiang, R.D. Schrimpf, R.A. Reed, D.M. Fleetwood, M.L. Alles, D. McMorrow, J. Lin, A. Vardi, J. del Alamo, Understanding charge collection mechanisms in InGaAs FinFETs using high-speed pulsed-laser transient testing with tunable wavelength. IEEE Trans. Nucl. Sci. 64, 2069–2078 (2017)CrossRefGoogle Scholar
  53. 53.
    T.F. Carruthers, W.T. Anderson, J.F. Weller, Optically induced backgating transients in GaAs FETs. IEEE Electron Device Lett 6, 580 (1985)CrossRefGoogle Scholar
  54. 54.
    A.B. Campbell, A. Knudson, D. McMorrow, W. Anderson, J. Roussos, S. Espy, S. Buchner, K. Kang, D. Kerns, S. Kerns, Ion-induced charge collection in GaAs MESFETs. IEEE Trans. Nucl. Sci. 36, 2292 (1989)CrossRefGoogle Scholar
  55. 55.
    Y. Umemoto, N. Matsunaga, K. Mitsusada, A bipolar mechanism for alpha particle-induced soft errors in GaAs integrated circuits. IEEE Trans. Elect. Dev. 16, 864 (1989)CrossRefGoogle Scholar
  56. 56.
    D. McMorrow, T.R. Weatherford, A.R. Knudson, S. Buchner, J.S. Melinger, L.H. Tran, A.B. Campbell, P.W. Marshall, C.J. Dale, A. Peczalski, S. Baier, Charge collection characteristics of GaAs heterostructure FETs fabricated with a low-temperature grown GaAs buffer layer. IEEE Trans. Nucl. Sci. 43, 918 (1996)CrossRefGoogle Scholar
  57. 57.
    D. McMorrow, J.B. Boos, D. Park, S. Buchner, A.R. Knudsen, J.S. Melinger, Charge-collection dynamics of InP high-electron mobility transistors. IEEE Trans. Nucl. Sci. 49, 1396–1400 (2002)CrossRefGoogle Scholar
  58. 58.
    D. McMorrow, A.R. Knudsen, J.B. Boos, D. Park, J.S. Melinger, Ionization-induced carrier transport in InAlAs/InGaAs high electron mobility transistors. IEEE Trans. Nucl. Sci. 51, 2857–2864 (2004)CrossRefGoogle Scholar
  59. 59.
    D. McMorrow, J. Brad Boos, A.R. Knudson, S. Buchner, M.-J. Yang, B.R. Bennett, J.S. Melinger, Charge-collection characteristics of low-power ultrahigh speed metamorphic AlSb/InAs high-electron mobility transistors (HEMTs). IEEE Trans. Nucl. Sci. 46, 2662–2668 (2000)CrossRefGoogle Scholar
  60. 60.
    P. Adell, R.D. Schrimpf, J.J. Barnaby, R. Marec, C. Chatry, P. Calvel, C. Barillot, O. Mion, Analysis of single-event transients in analog circuits. IEEE Trans. Nucl. Sci. 47, 2616–2623 (2000)CrossRefGoogle Scholar
  61. 61.
    M.W. Savage, J.L. Titus, T.L. Turflinger, R.L. Pease, C. Poivey, A comprehensive analog single-event transient analysis methodology. IEEE Trans. Nucl. Sci. 51, 3546–3552 (2004)CrossRefGoogle Scholar
  62. 62.
    S. Buchner, J. Howard, C. Poivey, D. McMorrow, R. Pease, Pulsed-laser testing methodology for single event transients in linear devices. IEEE Trans. Nucl. Sci. 51, 3716–3722 (2004)CrossRefGoogle Scholar
  63. 63.
    D. McMorrow, W.T. Lotshaw, J.S. Melinger, S. Buchner, Y. Boulghassoul, L.W. Massengill, R.L. Pease, Three-dimensional mapping of single-event effects using two photon absorption. IEEE Trans. Nucl. Sci. 50, 2199–2307 (2003)CrossRefGoogle Scholar
  64. 64.
    D. McMorrow, S. Buchner, W.T. Lotshaw, J.S. Melinger, M. Maher, M. Savage, Demonstration of single-event effects induced by through-wafer two-photon absorption. IEEE Trans. Nucl. Sci. 51, 3553–3557 (2004)CrossRefGoogle Scholar
  65. 65.
    D. McMorrow, W.T. Lotshaw, J.S. Melinger, S. Buchner, M. Maher, M. Savage, J.D. Davis, R.K. Lawrence, J.H. Bowman, R.D. Brown, D. Carlton, J. Pena, J. Vasquez, N.F. Haddad, K.M. Warren, L.M. Massengill, Single-event upset in Flip-Chip SRAM induced by through-wafer two-photon-absorption. IEEE Trans. Nucl. Sci. 52, 2421–2425 (2005)CrossRefGoogle Scholar
  66. 66.
    A. Khachatrian, N.J.-H. Roche, D. McMorrow, J. Warner, S.P. Buchner, J. Melinger, A dosimetry method for two-photon absorption induced single-event effects measurements. IEEE Trans. Nucl. Sci. 61, 3416–3223 (2014)CrossRefGoogle Scholar
  67. 67.
    J.M. Hales, A. Khachatrian, N.J.-H. Roche, J.H. Warner, S.P. Buchner, D. McMorrow, Simulation of laser-based two-photon absorption induced charge carrier generation in silicon. IEEE Trans. Nucl. Sci. 62, 1552–1557 (2015)Google Scholar
  68. 68.
    J. M. Hales, S.-H. Chi, T. Allen, S. Benis, N. Munera, J. W. Perry, D. McMorrow, D. J. Hagan, E. W. Van Stryland. Third-order nonlinear optical coefficients of Si and GaAs in the near-infrared spectral region, in Presented at Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, May 2018Google Scholar
  69. 69.
    I.B. Bogatyrev, D. Grojo, P. Delaporte, S. Leyder, M. Sentis, W. Marine, T.E. Itina, Non-linear absorption of 1.3-μm wavelength femtosecond laser pulses focused inside semiconductors: finite difference time domain-two temperature model combined computational study. J. Appl. Phys. 110, 103106 (2011)CrossRefGoogle Scholar
  70. 70.
    V. Pouget, SEE laser testing using two-photon absorption: modeling of charge deposition, in Presented at RADLAS 2013: 4th Thematic Workshop on Laser Testing of Radiation Effects, Paris, France, 20 September 2013Google Scholar
  71. 71.
    J.M. Hales, N.J. Roche, A. Khachatrian, D. McMorrow, S. Buchner, J.H. Warner, M. Turowski, L. Klas, N.C. Hooten, E. Zhang, R.A. Reed, R.D. Schrimpf, Two-photon absorption induced single-event effects: correlation between experiment and simulation. IEEE Trans. Nucl. Sci. 62, 2867–2873 (2015)CrossRefGoogle Scholar
  72. 72.
    J.M. Hales, N.J. Roche, A. Khachatrian, D. McMorrow, S. Buchner, J.H. Warner, M. Turowski, L. Klas, N.C. Hooten, E. Zhang, R.A. Reed, R.D. Schrimpf, Strong correlation between experiment and simulation for two-photon absorption induced carrier generation. IEEE Trans. Nucl. Sci. 64, 1133–1136 (2017)CrossRefGoogle Scholar
  73. 73.
    J.M. Hales, A. Khachatrian, S. Buchner, N. Roche, J.W. Warner, Z. Fleetwood, A. Ildefonso, J. Cressler, V. Ferlet-Cavrois, D. McMorrow, Experimental validation of an equivalent LET approach for correlating heavy-ion and laser-induced charge deposition. IEEE Trans. Nucl. Sci. 65, 1724–1733 (2018)CrossRefGoogle Scholar
  74. 74.
    S. Buchner, J. Warner, D. McMorrow, F. Miller, S. Morand, V. Pouget, C. Larue, P. Adell, G. Allen, Comparison of single event transients generated at four pulsed-laser test facilities-NRL, IMS, EADS, JPL. IEEE Trans. Nucl. Sci. 59, 988–998 (2012)CrossRefGoogle Scholar
  75. 75.
    V. Pouget, H. Lapuyade, P. Fouillat, D. Lewis, S. Buchner, Theoretical investigation of an equivalent laser LET. Microelectron. Reliab. 41, 1513–1518 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.U.S. Naval Research LaboratoryWashington, DCUSA

Personalised recommendations