Advertisement

Single-Event Effects Test Methods

  • Konstantin Tapero
Chapter

Abstract

This chapter presents an overview of main types of single-event effects (SEE), basic characteristics of sensitivity of devices and integrated circuits to SEE and existing standards and guidelines for testing with the use of heavy ion and proton accelerators. Basic requirements for both heavy ion and proton testing will be considered in detail including requirements for the energy of ions, their linear energy transfer (LET) and the range in semiconductor, recommendations for choosing the flux and fluence of ions, requirements for beam control during testing. Also this chapter gives information about the specifics of testing for different types of SEE, such as: impact of temperature and electrical bias conditions on the test results; recommendations for choosing test patterns during testing; advantages and disadvantages of static and dynamic testing; impact of total ionizing dose effects on test results; specifics of testing for destructive types of SEEs and others. Recommendations for choosing the SEE test algorithms are summarized.

References

  1. 1.
    Y. Kimoto, N. Nemoto, H. Matsumoto, et al., Space radiation environment and its effects on satellites: analysis of the first data from TEDA on board ADEOS-II. IEEE Trans. Nucl. Sci.52(5),1574–1578 (2005)CrossRefGoogle Scholar
  2. 2.
    EIA/JESD57, Test Procedures for the Manegement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation (EIA/JEDEC Standard, Nov. 2017, available at: https://www.jedec.org/standards-documents/docs/jesd-57)
  3. 3.
    ASTM F 1192-11, Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of Semiconductor Devices (ASTM Standard, West Conshohocken, PA, 2006)Google Scholar
  4. 4.
    MIL-STD-750-1, Environmental Test Methods for Semiconductor Devices (Department of Defense Test Method Standard, USA, 2012)Google Scholar
  5. 5.
    ESCC Basic Specification No. 25100, Single Event Effect Test Methods and Guidelines (Eurupean Space Agency, available at https://escies.org)
  6. 6.
    C. Poivey, S. Buchner, J. Howard, K. LaBel, Testing Guidelines for Single Event Transient (SET) Testing of Linear Devices (NASA-GSFC, 2003, available at https://radhome.gsfc.nasa.gov/radhome/papers/2003_linear.pdf)
  7. 7.
    S. Buchner, P. Marshall, S. Kniffin, K. LaBel, Proton Test Guideline Development—Lessons Learned (NASA-GSFC, 2002, available at https://radhome.gsfc.nasa.gov/radhome/papers/proton_testing_guidelines_2002.pdf)
  8. 8.
    J.R. Schwank, M.R. Shaneyfelt, P.E. Dodd, Radiation Hardness Assurance Testing of Microelectronic Devices and Integrated Circuits: Radiation Environments, Physical Mechanisms, and Foundations for Hardness Assurance. IEEE Trans. Nucl. Sci. 60(3), 2074–2100 (2013)CrossRefGoogle Scholar
  9. 9.
    J.R. Schwank, M.R. Shaneyfelt, P.E. Dodd, Radiation Hardness Assurance Testing of Microelectronic Devices and Integrated Circuits: Test Guideline for Proton and Heavy Ion Single-Event Effects. IEEE Trans. Nucl. Sci. 60(3), 2101–2118 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Javanainen, J.R. Schwank, M.R. Shaneyfelt, et al., Heavy ion induced charge yield in MOSFETs. IEEE Trans. Nucl. Sci. 56(6), 3367–3371 (2009)CrossRefGoogle Scholar
  11. 11.
    J.R. Schwank, M.R. Shaneyfelt, J. Baggio, et al., Effects of angle of incidence on proton and neutron-induced single-event latchup. IEEE Trans. Nucl. Sci. 53(6), 3122–3131 (2006)CrossRefGoogle Scholar
  12. 12.
    F.W. Sexton, W.T. Corbett, R.K. Treece, et al., SEU simulation and testing of resistor-hardened D-latches in the SA3300 microprocessor. IEEE Trans. Nucl. Sci. 38(6), 1521–1528 (1991)CrossRefGoogle Scholar
  13. 13.
    J.R. Schwank, P.E. Dodd, M.R. Shaneyfelt, et al., Issues of single-event proton testing of SRAMs. IEEE Trans. Nucl. Sci. 51(6), 3692–3700 (2004)CrossRefGoogle Scholar
  14. 14.
    A.B. Campbell, W.J. Stapor, The total dose dependence of the single event upset sensitivity Of IDT static RAMs. IEEE Trans. Nucl. Sci. 31(6), 1175–1177 (1984)CrossRefGoogle Scholar
  15. 15.
    C.L. Axness, J.R. Schwank, P.S. Winokur, et al., Single event upset in irradiated 16K CMOS SRAMs. IEEE Trans. Nucl. Sci. 35(6), 1602–1607 (1988)CrossRefGoogle Scholar
  16. 16.
    E.G. Stassinopoulos, G.J. Brucker, O.V. Gunten, H.S. Kim, Variation in SEU sensitivity of dose-implanted CMOS SRAMS. IEEE Trans. Nucl. Sci. 36(6), 2330–2338 (1989)CrossRefGoogle Scholar
  17. 17.
    J.R. Schwank, M.R. Shaneyfelt, J.A. Felix, et al., Effect of total dose irradiation on single-event upset hardness. IEEE Trans. Nucl. Sci. 53(4), 1772–1778 (2006)CrossRefGoogle Scholar
  18. 18.
    J.R. Schwank, M.R. Shaneyfelt, J. Baggio, et al., Effects of particle energy on proton-induced single-event latchup. IEEE Trans. Nucl. Sci. 52(6), 2622–2629 (2005)CrossRefGoogle Scholar
  19. 19.
    T.F. Miyahira, A.H. Johnston, H.N. Becker, et al., Catastrophic latchup in CMOS analog-to-digital converters. IEEE Trans. Nucl. Sci. 48(6), 1833–1840 (2001)CrossRefGoogle Scholar
  20. 20.
    H.N. Becker, T.F. Miyahira, A.H. Johnston, Latent damage in CMOS devices from single-event latchup. IEEE Trans. Nucl. Sci. 49(6), 3009–3015 (2002)CrossRefGoogle Scholar
  21. 21.
    P. Layton, S. Kniffin, S. Guertin, et al., SEL induced latent damage, testing, and evaluation. IEEE Trans. Nucl. Sci. 53(6), 3153–3157 (2006)CrossRefGoogle Scholar
  22. 22.
    J.L. Titus, C. Wheatley, Experimental studies of single-event gate rupture and burnout in vertical power MOSFETs. IEEE Trans. Nucl. Sci. 43(2), 533–545 (1996)CrossRefGoogle Scholar
  23. 23.
    T.F. Wrobel, On heavy ion induced hard-errors in dielectric structures. IEEE Trans. Nucl. Sci. 34(6), 1262–1268 (1987)CrossRefGoogle Scholar
  24. 24.
    G.H. Johnson, R.D. Schrimpf, K.F. Galloway, R. Koga, Temperature dependence of single-event burnout in N-channel power MOSFETs. IEEE Trans. Nucl. Sci. 39(6), 1605–1612 (1992)CrossRefGoogle Scholar
  25. 25.
    F.W. Sexton, D.M. Fleetwood, M.R. Shaneyfelt, et al., Single event gate rupture in thin gate oxides. IEEE Trans. Nucl. Sci. 44(6), 2345–2352 (1997)CrossRefGoogle Scholar
  26. 26.
    L.E. Selva, G.M. Swift, W.A. Taylor, L.D. Edmonds, On the role of energy deposition in triggering SEGR in power MOSFETs. IEEE Trans. Nucl. Sci. 46(6), 1403–1409 (1999)CrossRefGoogle Scholar
  27. 27.
    F.W. Sexton, Destructive single-event effects in semiconductor devices and ICs. IEEE Trans. Nucl. Sci. 50(3), 603–621 (2003)CrossRefGoogle Scholar
  28. 28.
    J.L. Titus, C.F. Wheatley, SEE characterization of vertical DMOSFETs: an updated test protocol. IEEE Trans. Nucl. Sci. 50(6), 2341–2351 (2003)CrossRefGoogle Scholar
  29. 29.
    G. Busatto, G. Curro, F. Iannuzzo, et al., Experimental study about gate oxide damages in patterned MOS capacitor irradiated with heavy ions. Microelectron. Reliab. 49(9–11), 1033–1037 (2009)CrossRefGoogle Scholar
  30. 30.
    A.H. Johnston, G.M. Swift, T.F. Miyahira, L.D. Edmonds, A model for single event transients in comparators. IEEE Trans. Nucl. Sci. 47(6), 2624–2633 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Konstantin Tapero
    • 1
    • 2
  1. 1.Research Institute of Scientific Instruments (RISI)MoscowRussian Federation
  2. 2.National University of Science and Technology MISISMoscowRussian Federation

Personalised recommendations