Advertisement

On the Complexity of Resilience for Aggregation Queries

  • Dongjing Miao
  • Zhipeng Cai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)

Abstract

Resilience, as an potential explanation of a specified query, plays a fundamental and important role in query explanation, database debugging and error tracing. Resilience decision problem is defined on a database d, given a boolean query q where q(d) is initially true, and an integer k, it is to determine if there exists a tuple set \(\varDelta \) such that size of \(\varDelta \) is no more than k and query result \(q(d\oplus \varDelta )\) becomes false, where \(\oplus \) can be deletion or insertion operation. Results of this problem on relational algebraic queries have been showed in previous work. However, we revisit this decision problem on aggregation queries in the light of the parametric refinement of complexity theory, provide new results. We show that, this problem is intractable on nested COUNT and SUM query both under data complexity and parametric complexity.

Keywords

Resilience Aggregation Database Parameterized complexity 

Notes

Acknowledgement

This work is partly supported by the National Science Foundation (NSF) under grant NOs. 1252292, 1741277, 1704287, and 1829674.

References

  1. 1.
    Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans. Database Syst. 6(4), 557–575 (1981).  https://doi.org/10.1145/319628.319634CrossRefzbMATHGoogle Scholar
  2. 2.
    Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for updatable views. In: Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. PODS 2006, pp. 338–347. ACM, New York (2006).  https://doi.org/10.1145/1142351.1142399
  3. 3.
    Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations through views. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. PODS 2002, pp. 150–158. ACM, New York (2002).  https://doi.org/10.1145/543613.543633
  4. 4.
    Cai, Z., Wang, C., Bourgeois, A.: Preface: special issue on computing and combinatorics conference and wireless algorithms, systems, and applications conference. J. Comb. Optim. 32(4), 983–984 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cai, Z., Zheng, X.: A private and efficient mechanism for data uploading in smart cyber-physical systems. IEEE Trans. Netw. Sci. Eng., 1 (2018)Google Scholar
  6. 6.
    Chen, Q., Gao, H., Cheng, S., Li, J., Cai, Z.: Distributed non-structure based data aggregation for duty-cycle wireless sensor networks. In: The 36th Annual IEEE International Conference on Computer Communications (INFOCOM 2017), pp. 1–9, May 2017.  https://doi.org/10.1109/INFOCOM.2017.8056960
  7. 7.
    Cheng, S., Cai, Z., Li, J., Gao, H.: Extracting kernel dataset from big sensory data in wireless sensor networks. IEEE Trans. Knowl. Data Eng. 29(4), 813–827 (2017).  https://doi.org/10.1109/TKDE.2016.2645212CrossRefGoogle Scholar
  8. 8.
    Cong, G., Fan, W., Geerts, F.: Annotation propagation revisited for key preserving views. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management. CIKM 2006, pp. 632–641. ACM, New York (2006).  https://doi.org/10.1145/1183614.1183705
  9. 9.
    Cong, G., Fan, W., Geerts, F., Li, J., Luo, J.: On the complexity of view update analysis and its application to annotation propagation. IEEE Trans. Knowl. Data Eng. 24(3), 506–519 (2012).  https://doi.org/10.1109/TKDE.2011.27CrossRefGoogle Scholar
  10. 10.
    Cosmadakis, S.S., Papadimitriou, C.H.: Updates of relational views. J. ACM 31(4), 742–760 (1984).  https://doi.org/10.1145/1634.1887MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dayal, U., Bernstein, P.A.: On the correct translation of update operations on relational views. ACM Trans. Database Syst. 7(3), 381–416 (1982).  https://doi.org/10.1145/319732.319740MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (2012).  https://doi.org/10.1007/978-1-4612-0515-9CrossRefzbMATHGoogle Scholar
  13. 13.
    Freire, C., Gatterbauer, W., Immerman, N., Meliou, A.: The complexity of resilience and responsibility for self-join-free conjunctive queries. Proc. VLDB Endow. 9(3), 180–191 (2015).  https://doi.org/10.14778/2850583.2850592CrossRefGoogle Scholar
  14. 14.
    Han, M., Li, J., Cai, Z., Han, Q.: Privacy reserved influence maximization in GPS-enabled cyber-physical and online social networks. In: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), pp. 284–292. IEEE (2016)Google Scholar
  15. 15.
    Han, M., Yan, M., Cai, Z., Li, Y.: An exploration of broader influence maximization in timeliness networks with opportunistic selection. J. Netw. Comput. Appl. 63, 39–49 (2016)CrossRefGoogle Scholar
  16. 16.
    Han, M., Yan, M., Cai, Z., Li, Y., Cai, X., Yu, J.: Influence maximization by probing partial communities in dynamic online social networks. Trans. Emerg. Telecommun. Technol. 28(4), e3054 (2017)CrossRefGoogle Scholar
  17. 17.
    He, Z., Cai, Z., Yu, J.: Latent-data privacy preserving with customized data utility for social network data. IEEE Trans. Veh. Technol. 67(1), 665–673 (2018)CrossRefGoogle Scholar
  18. 18.
    He, Z., Cai, Z., Yu, J., Wang, X., Sun, Y., Li, Y.: Cost-efficient strategies for restraining rumor spreading in mobile social networks. IEEE Trans. Veh. Technol. 66(3), 2789–2800 (2017).  https://doi.org/10.1109/TVT.2016.2585591CrossRefGoogle Scholar
  19. 19.
    Huang, Y., Cai, Z., Bourgeois, A.G.: Location privacy protection with accurate service. J. Netw. Comput. Appl. 103, 146–156 (2018)CrossRefGoogle Scholar
  20. 20.
    Keller, A.M.: Algorithms for translating view updates to database updates for views involving selections, projections, and joins. In: Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. PODS 1985, pp. 154–163. ACM, New York (1985).  https://doi.org/10.1145/325405.325423
  21. 21.
    Kimelfeld, B.: A dichotomy in the complexity of deletion propagation with functional dependencies. In: Proceedings of the 31st Symposium on Principles of Database Systems. PODS 2012, pp. 191–202. ACM, New York (2012).  https://doi.org/10.1145/2213556.2213584
  22. 22.
    Kimelfeld, B., Vondrák, J., Williams, R.: Maximizing conjunctive views in deletion propagation. ACM Trans. Database Syst. 37(4), 24:1–24:37 (2012).  https://doi.org/10.1145/2389241.2389243CrossRefGoogle Scholar
  23. 23.
    Kimelfeld, B., Vondrák, J., Woodruff, D.P.: Multi-tuple deletion propagation: approximations and complexity. Proc. VLDB Endow. 6(13), 1558–1569 (2013).  https://doi.org/10.14778/2536258.2536267CrossRefGoogle Scholar
  24. 24.
    Li, J., Cai, Z., Yan, M., Li, Y.: Using crowdsourced data in location-based social networks to explore influence maximization. In: The 35th Annual IEEE International Conference on Computer Communications (INFOCOM 2016), pp. 1–9, 2016.  https://doi.org/10.1109/INFOCOM.2016.7524471
  25. 25.
    Liang, Y., Cai, Z., Han, Q., Li, Y.: Location privacy leakage through sensory data. Secur. Commun. Netw. 2017, 12 (2017)CrossRefGoogle Scholar
  26. 26.
    Miao, D., Liu, X., Li, J.: On the complexity of sampling query feedback restricted database repair of functional dependency violations. Theor. Comput. Sci. 609, 594–605 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries (extended abstract). In: Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. PODS 1997, pp. 12–19. ACM, New York (1997).  https://doi.org/10.1145/263661.263664
  28. 28.
    Zhang, K., Han, Q., Cai, Z., Yin, G.: RiPPAS: a ring-based privacy-preserving aggregation scheme in wireless sensor networks. Sensors 17(2), 300 (2017)CrossRefGoogle Scholar
  29. 29.
    Zhang, L., Wang, X., Lu, J., Li, P., Cai, Z.: An efficient privacy preserving data aggregation approach for mobile sensing. Secur. Commun. Netw. 9(16), 3844–3853 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
  2. 2.Department of Computer ScienceGeorgia State UniversityAtlantaUSA

Personalised recommendations