Advertisement

Rent Division Among Groups

  • Mohammad Ghodsi
  • Mohamad Latifian
  • Arman Mohammadi
  • Sadra Moradian
  • Masoud Seddighin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)

Abstract

In this paper, we extend the Rent Sharing problem to the case that every room must be allocated to a group of agents. In the classic Rent Sharing problem, there are n agents and a house with n rooms. The goal is to allocate one room to each agent and assign a rent to each room in a way that no agent envies any other option. Our setting deviates from the classic Rent Sharing problem in a sense that the rent charged to each room must be divided among the members of the resident group.

We define three notions to evaluate fairness, namely, weak envy-freeness, aggregate envy-freeness and strong envy-freeness. We also define three different policies to divide the cost among the group members, namely, equal, proportional, and free cost-sharing policies.

We present several positive and negative results for different combinations of the fairness criteria and rent-division policies. Specifically, when the groups are pre-determined, we propose a strong envy-free solution that allocates the rooms to the agents, with free cost-sharing policy. In addition, for the case that the groups are not pre-determined, we propose a strong envy-free allocation algorithm with equal cost-sharing policy. We leverage our results to obtain an algorithm that determines the maximum total rent along with the proper allocation and rent-division method.

Keywords

Fairness Envy-freeness Rent sharing House allocation 

References

  1. 1.
    Foley, D.K.: Resource allocation and the public sector (1967)Google Scholar
  2. 2.
    Gamov, G., Stern, M.: Puzzle math. Viking, New York (1958)zbMATHGoogle Scholar
  3. 3.
    Procaccia, A.D.: Cake cutting: not just child’s play. Commun. ACM 56(7), 78–87 (2013)CrossRefGoogle Scholar
  4. 4.
    Robertson, J., Webb, W.: Cake-Cutting Algorithms: Be Fair If You Can (1998)Google Scholar
  5. 5.
    Segal-Halevi, E., Hassidim, A., Aumann, Y.: Envy-free cake-cutting in two dimensions. In: AAAI, vol. 15, pp. 1021–1028 (2015)Google Scholar
  6. 6.
    Gal, Y.K., Mash, M., Procaccia, A.D., Zick, Y.: Which is the fairest (rent division) of them all? In: Proceedings of the 2016 ACM Conference on Economics and Computation, pp. 67–84. ACM (2016)Google Scholar
  7. 7.
    Cohler, Y.J., Lai, J.K., Parkes, D.C., Procaccia, A.D.: Optimal envy-free cake cutting. In: AAAI (2011)Google Scholar
  8. 8.
    Su, F.E.: Rental harmony: Sperner’s lemma in fair division. Am. Math. Mon. 106(10), 930–942 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Aragones, E.: A derivation of the money Rawlsian solution. Soc. Choice Welf. 12(3), 267–276 (1995)CrossRefGoogle Scholar
  10. 10.
    Chan, P.H., Huang, X., Liu, Z., Zhang, C., Zhang, S.: Assignment and pricing in roommate market. In: AAAI, pp. 446–452 (2016)Google Scholar
  11. 11.
    Segal-Halevi, E., Nitzan, S.: Proportional cake-cutting among families. arXiv preprint arXiv:1510.03903 (2015)
  12. 12.
    Robert, C., Carnevale, P.J.: Group choice in ultimatum bargaining. Organ. Behav. Hum. Decis. Process. 72(2), 256–279 (1997)CrossRefGoogle Scholar
  13. 13.
    Bornstein, G., Yaniv, I.: Individual and group behavior in the ultimatum game: are groups more “rational" players? Exp. Econ. 1(1), 101–108 (1998)CrossRefGoogle Scholar
  14. 14.
    Messick, D.M., Moore, D.A., Bazerman, M.H.: Ultimatum bargaining with a group: underestimating the importance of the decision rule. Organ. Behav. Hum. Decis. Process. 69(2), 87–101 (1997)CrossRefGoogle Scholar
  15. 15.
    Santos, F.P., Santos, F.C., Paiva, A., Pacheco, J.M.: Evolutionary dynamics of group fairness. J. Theor. Biol. 378, 96–102 (2015)CrossRefGoogle Scholar
  16. 16.
    Manurangsi, P., Suksompong, W.: Asymptotic existence of fair divisions for groups. Math. Soc. Sci. 89, 100–108 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Suksompong, W.: Approximate maximin shares for groups of agents. Math. Soc. Sci. 92, 40–47 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chen, Y., Lai, J.K., Parkes, D.C., Procaccia, A.D.: Truth, justice, and cake cutting. Games Econ. Behav. 77(1), 284–297 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Alijani, R., Farhadi, M., Ghodsi, M., Seddighin, M., Tajik, A.S.: Envy-free mechanisms with minimum number of cuts. In: AAAI, pp. 312–318 (2017)Google Scholar
  20. 20.
    Stromquist, W.: Envy-free cake divisions cannot be found by finite protocols. Electron. J. Comb. 15(1), 11 (2008)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Dehghani, S., Farhadi, A., HajiAghayi, M., Yami, H.: Envy-free chore division for an arbitrary number of agents. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2564–2583. SIAM (2018)CrossRefGoogle Scholar
  22. 22.
    Alkan, A., Demange, G., Gale, D.: Fair allocation of indivisible goods and criteria of justice. Econ.: J. Econ. Soc. 1023–1039 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ghodsi, M., HajiAghayi, M., Seddighin, M., Seddighin, S., Yami, H.: Fair allocation of indivisible goods: improvements and generalizations. In: Proceedings of the 2018 ACM Conference on Economics and Computation, pp. 539–556. ACM (2018)Google Scholar
  24. 24.
    Farhadi, A., et al.: Fair allocation of indivisible goods to asymmetric agents. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 1535–1537. International Foundation for Autonomous Agents and Multiagent Systems (2017)Google Scholar
  25. 25.
    Procaccia, A.D., Wang, J.: Fair enough: guaranteeing approximate maximin shares. In: Proceedings of the Fifteenth ACM Conference on Economics and Computation, pp. 675–692. ACM (2014)Google Scholar
  26. 26.
    Amanatidis, G., Markakis, E., Nikzad, A., Saberi, A.: Approximation algorithms for computing maximin share allocations. ACM Trans. Algorithms (TALG) 13(4), 52 (2017)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Cole, R., Gkatzelis, V.: Approximating the nash social welfare with indivisible items. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 371–380. ACM (2015)CrossRefGoogle Scholar
  28. 28.
    Ghodsi, M., Saleh, H., Seddighin, M.: Fair allocation of indivisible items with externalities. arXiv preprint arXiv:1805.06191 (2018)
  29. 29.
    Procaccia, A.D., Velez, R.A., Yu, D.: Fair rent division on a budget. In: AAAI (2018)Google Scholar
  30. 30.
    Azrieli, Y., Shmaya, E.: Rental harmony with roommates. J. Econ. Theory 153, 128–137 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mohammad Ghodsi
    • 1
    • 2
  • Mohamad Latifian
    • 1
  • Arman Mohammadi
    • 1
  • Sadra Moradian
    • 1
  • Masoud Seddighin
    • 1
  1. 1.Department of Computer EngineeringSharif University of TechnologyTehranIran
  2. 2.School of Computer ScienceInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations