Advertisement

Transmitting Particles in a Polygonal Domain by Repulsion

  • Amirhossein Mozafari
  • Thomas C. Shermer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)

Abstract

In this paper, we introduce the problem of transmitting particles to a target point by the effect of a repulsion actuator (RA). In this problem, we are given a polygonal domain P and a target point t inside it. Also, there is a particle at each point of P. The question is which particles can get to the target point t by activating a RA in P. We present the first polynomial time algorithm to solve this problem.

Keywords

Geometric algorithm Polygonal domain Repulsion actuator Polynomial time algorithm 

References

  1. 1.
    Biro, M.: Beacon-based routing and guarding. Ph.D. dissertation. State University of New York at Stony Brook (2013)Google Scholar
  2. 2.
    Biro, M., Gao, J., Iwerks, J., Kostitsyna, I., Mitchell, J.S.B.: Beacon-based routing and coverage. In: 21st Fall Workshop on Computational Geometry, FWCG 2011 (2011)Google Scholar
  3. 3.
    Biro, M., Gao, J., Iwerks, J., Kostitsyna, I., Mitchell,J.S.B.: Combinatorics of beacon-based routing and coverage. In: Proceedings of the 25th Canadian Conference on Computational Geometry, CCCG 2013, vol. 1, p. 3 (2013)Google Scholar
  4. 4.
    Biro, M., Iwerks, J., Kostitsyna, I., Mitchell, J.S.B.: Beacon-based algorithms for geometric routing. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 158–169. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40104-6_14CrossRefzbMATHGoogle Scholar
  5. 5.
    Bose, P., Shermer, T.C.: Gathering by repulsion. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 101. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)Google Scholar
  6. 6.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational geometry. In: Computational Geometry, pp. 1–17. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-662-03427-9_1CrossRefGoogle Scholar
  7. 7.
    Kouhestani, B., Rappaport, D., Salomaa, K.: On the inverse beacon attraction region of a point. In: Proceedings of the 27th Canadian Conference on Computational Geometry, CCCG 2015, pp. 205–212 (2015)Google Scholar
  8. 8.
    Toth, C.D., O’Rourke, J., Goodman, J.E.: Handbook of Discrete and Computational Geometry. Chapman and Hall/CRC, Boca Raton (2017)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations