Advertisement

Practical and Easy-to-Understand Card-Based Implementation of Yao’s Millionaire Protocol

  • Daiki Miyahara
  • Yu-ichi Hayashi
  • Takaaki Mizuki
  • Hideaki Sone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)

Abstract

Yao’s millionaire protocol enables Alice and Bob to know whether or not Bob is richer than Alice by using a public-key cryptosystem without revealing the actual amounts of their properties. In this paper, we present a simple and practical implementation of Yao’s millionaire protocol using a deck of playing cards; we straightforwardly implement the idea behind Yao’s millionaire protocol so that even non-experts can easily understand its correctness and secrecy. Our implementation is based partially on the previous card-based scheme proposed by Nakai, Tokushige, Misawa, Iwamoto, and Ohta; their scheme admits players’ private actions on a sequence of cards called Private Permutation (PP), implying that a malicious player could make an active attack (for example, he/she could exchange some of the cards stealthily when doing such a private action). In contrast, our implementation relies on a familiar shuffling operation called a random cut, and hence, it can be conducted completely publicly so as to avoid any active attack.

Keywords

Card-based protocols Real-life hands-on cryptography Secure multi-party computations Yao’s millionaire protocol Deck of cards 

Notes

Acknowledgments

We thank the anonymous referees, whose comments have helped us to improve the presentation of the paper. This work was supported by JSPS KAKENHI Grant Number JP17K00001.

References

  1. 1.
    Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a PEZ dispenser. Theor. Comput. Sci. 306(1), 69–84 (2003). http://www.sciencedirect.com/science/article/pii/S030439750300210XMathSciNetCrossRefGoogle Scholar
  2. 2.
    Boer, B.: More efficient match-making and satisfiability the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-46885-4_23CrossRefGoogle Scholar
  3. 3.
    Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Commun. ACM 39(5), 77–85 (1996).  https://doi.org/10.1145/229459.229469CrossRefGoogle Scholar
  4. 4.
    Hanaoka, G.: Towards user-friendly cryptography. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 481–484. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61273-7_24CrossRefGoogle Scholar
  5. 5.
    Jakobsson, M., Yung, M.: Proving without knowing: on oblivious, agnostic and blindfolded provers. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 186–200. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_15CrossRefGoogle Scholar
  6. 6.
    Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. Cryptology ePrint Archive, Report 2017/423 (2017). https://eprint.iacr.org/2017/423
  7. 7.
    Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_32CrossRefGoogle Scholar
  8. 8.
    Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. Cryptology ePrint Archive, Report 2015/1031 (2015). https://eprint.iacr.org/2015/1031
  9. 9.
    Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using the 15 puzzle. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 255–266. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73556-4_28CrossRefGoogle Scholar
  10. 10.
    Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2014)CrossRefGoogle Scholar
  11. 11.
    Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) Fun with Algorithms. Lecture Notes in Computer Science, vol. 8496, pp. 313–324. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07890-8_27CrossRefGoogle Scholar
  12. 12.
    Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic protocols and its applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(1), 3–11 (2017)CrossRefGoogle Scholar
  13. 13.
    Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02270-8_36CrossRefGoogle Scholar
  14. 14.
    Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a card-based three-input voting protocol utilizing private permutations. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 153–165. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72089-0_9CrossRefGoogle Scholar
  15. 15.
    Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 500–517. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48965-0_30CrossRefGoogle Scholar
  16. 16.
    Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45008-2_16CrossRefGoogle Scholar
  17. 17.
    Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Pile-shifting scramble for card-based protocols. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E101.A(9), 1494–1502 (2018)CrossRefGoogle Scholar
  18. 18.
    Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Five-card secure computations using unequal division shuffle. In: Dediu, A.-H., Magdalena, L., Martín-Vide, C. (eds.) TPNC 2015. LNCS, vol. 9477, pp. 109–120. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26841-5_9CrossRefGoogle Scholar
  19. 19.
    Nishimura, A., Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols using unequal division shuffles. Soft Comput. 22, 361–371 (2017).  https://doi.org/10.1007/s00500-017-2858-2CrossRefzbMATHGoogle Scholar
  20. 20.
    Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a random bisection cut. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49001-4_5CrossRefGoogle Scholar
  21. 21.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. SFCS 1982. IEEE Computer Society, Washington, DC, USA (1982).  https://doi.org/10.1109/SFCS.1982.88

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Daiki Miyahara
    • 1
    • 4
  • Yu-ichi Hayashi
    • 2
  • Takaaki Mizuki
    • 3
  • Hideaki Sone
    • 3
  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan
  2. 2.Graduate School of Information SciencesNara Institute of Science and TechnologyIkomaJapan
  3. 3.Cyberscience CenterTohoku UniversitySendaiJapan
  4. 4.National Institute of Advanced Industrial Science and TechnologyKoto-kuJapan

Personalised recommendations