# Generating Algebraic Expressions for Labeled Grid Graphs

• Mark Korenblit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11346)

## Abstract

The paper investigates relationship between algebraic expressions and labeled graphs. We consider directed grid graphs having m rows and n columns. Our intent is to simplify the expressions of these graphs. With that end in view, we describe two methods which generate expressions for directed grid graphs. For both methods, lengths of the expressions grow polynomially with n while m is determined as a constant parameter. Besides, we apply these methods to a square grid graph in which the number of rows is equal to the number of columns. We prove that the lengths of the expressions derived by the methods depend exponentially and quasi-polynomially, respectively, on the size of the graph.

## References

1. 1.
Ball, W.W.R., Coxeter, H.S.M.: Mathematical Recreations and Essays, 13th edn. The Macmillan Company, Dover, New York (1987)Google Scholar
2. 2.
Bar-Noy, A., Cheilaris, P., Lampis, M., Mitsou, V., Zachos, S.: Ordered coloring grids and related graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 30–43. Springer, Heidelberg (2010).
3. 3.
Bein, W.W., Brucker, P.: Greedy concepts for network flow problems. Discret. Appl. Math. 15(2–3), 135–144 (1986)
4. 4.
Bein, W.W., Kamburowski, J., Stallmann, M.F.M.: Optimal reduction of two-terminal directed acyclic graphs. SIAM J. Comput. 21(6), 1112–1129 (1992)
5. 5.
Duffin, R.J.: Topology of series-parallel networks. J. Math. Anal. Appl. 10, 303–318 (1965)
6. 6.
Finta, L., Liu, Z., Milis, I., Bampis, E.: Scheduling UET-UCT series-parallel graphs on two processors. Theor. Comput. Sci. 162(2), 323–340 (1996)
7. 7.
Golumbic, M.C., Gurvich, V.: Read-once functions. In: Crama, Y., Hammer, P.L. (eds.) Boolean Functions: Theory, Algorithms and Applications, pp. 519–560. Cambridge University Press, New York (2011)Google Scholar
8. 8.
Golumbic, M.C., Mintz, A., Rotics, U.: Factoring and recognition of read-once functions using cographs and normality and the readability of functions associated with partial k-trees. Discret. Appl. Math. 154(10), 1465–1477 (2006)
9. 9.
Golumbic, M.C., Perl, Y.: Generalized Fibonacci maximum path graphs. Discret. Math. 28, 237–245 (1979)
10. 10.
Grötschel, M., Martin, A., Weismantel, R.: Routing in grid graphs by cutting planes. ZOR - Math. Methods Oper. Res. 41(3), 255–275 (1995)
11. 11.
Hosoya, H., Harary, F.: On the matching properties of three fence graphs. J. Math. Chem. 12, 211–218 (1993)
12. 12.
Irani, S.: Coloring inductive graphs on-line. Algorithmica 11(1), 53–72 (1994)
13. 13.
Kaufmann, M., Gao, S., Thulasiraman, K.: On Steiner minimal trees in grid graphs and its application to VLSI routing. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 351–359. Springer, Heidelberg (1994).
14. 14.
Kaufmann, M., Mehlhorn, K.: A linear-time algorithm for the homotopic routing problem in grid graphs. SIAM J. Comput. 23(2), 227–246 (1998)
15. 15.
Kirousis, L.M., Thilikos, D.M.: The linkage of a graph. SIAM J. Comput. 25(3), 626–647 (1996)
16. 16.
Korenblit, M.: Decomposition methods for generating algebraic expressions of full square rhomboids and other graphs. Discret. Appl. Math. 228, 60–72 (2017)
17. 17.
Korenblit, M., Levit, V.E.: On algebraic expressions of series-parallel and Fibonacci graphs. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 215–224. Springer, Heidelberg (2003).
18. 18.
Krause, A.: Bounded Treewidth Graphs - A Survey German Russian Winter School, St. Petersburg, Russia (2003). http://wwwmayr.in.tum.de/konferenzen/Jass03/presentations/krause.pdf
19. 19.
Levit, V.E., Korenblit, M.: A symbolic approach to scheduling of robotic lines. In: Intelligent Scheduling of Robots and Flexible Manufacturing Systems. The Center for Technological Education Holon, Israel, pp. 113–125 (1996)Google Scholar
20. 20.
Mintz, A., Golumbic, M.C.: Factoring Boolean functions using graph partitioning. Discret. Appl. Math. 149(1–3), 131–153 (2005)
21. 21.
Monma, C.L.: Sequencing with series-parallel precedence constraints. Math. Oper. Res. 4(3), 215–224 (1979)
22. 22.
Mundici, D.: Solution of Rota’s problem on the order of series-parallel networks. Adv. Appl. Math. 12, 455–463 (1991)
23. 23.
Noy, M., Ribó, A.: Recursively constructible families of graphs. Adv. Appl. Math. 32, 350–363 (2004)
24. 24.
Oikawa, M.K., Ferreira, J.E., Malkowski, S., Pu, C.: Towards algorithmic generation of business processes: from business step dependencies to process algebra expressions. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 80–96. Springer, Heidelberg (2009).
25. 25.
Satyanarayana, A., Wood, R.K.: A linear time algorithm for computing K-terminal reliability in series-parallel networks. SIAM J. Comput. 14(4), 818–832 (1985)
26. 26.
Savicky, P., Woods, A.R.: The number of Boolean functions computed by formulas of a given size. Rand. Struct. Algorithms 13, 349–382 (1998)
27. 27.
Schmidt, J.P.: All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings. SIAM J. Comput. 27(4), 972–992 (1998)
28. 28.
Sesh Kumar, K.S.: Convex relaxations for learning bounded-treewidth decomposable graphs. In: Proceedings of 30th International Conference on Machine Learning (ICML2013), JMLR: W&CP, vol. 28 (2013)Google Scholar
29. 29.
Tamir, A.: A strongly polynomial algorithm for minimum convex separable quadratic cost flow problems on two-terminal series-parallel networks. Math. Program. 59, 117–132 (1993)
30. 30.
Wald, J.A., Colbourn, C.J.: Steiner trees in probabilistic networks. Microelectron. Reliabil. 23(5), 837–840 (1983)
31. 31.
Wang, A.R.R.: Algorithms for multilevel logic optimization. Ph.D. thesis, University of California, Berkeley (1989)Google Scholar
32. 32.
Weisstein, E.W.: Grid Graph From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/GridGraph.html