Advertisement

Effect of Topological Structure and Coupling Strength in Weighted Multiplex Networks

  • Rajesh KumarEmail author
  • Anurag SinghEmail author
  • Hocine CherifiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11280)

Abstract

Algebraic connectivity (second smallest eigenvalue of the supra-Laplacian matrix of the underlying multilayer network) and inter-layer coupling strength play an important role in the diffusion processes on the multiplex networks. In this work, we study the effect of inter-layer coupling strength, topological structure on algebraic connectivity in weighted multiplex networks. The results show a remarkable transition in the value of algebraic connectivity from classical cases where the inter-layer coupling strength is homogeneous. We investigate various topological structures in multiplex networks using configuration model, the Barabasi-Albert model (BA) and empirical data-set of multiplex networks. The threshold value \(d_c^{'}\) is found smaller in heterogeneous networks for all the multiplex networks as compared to the homogeneous case. Experimental results reveal that the topological structure (average clustering coefficient) and inter-layer coupling strength has considerable effect on threshold values for the algebraic connectivity.

Keywords

Multiplex network Algebraic connectivity Coupling strength Diffusion dynamics Homogeneous and heterogeneous distribution of weights 

References

  1. 1.
    Aguirre, J., Sevilla-Escoboza, R., Gutiérrez, R., Papo, D., Buldú, J.: Synchronization of interconnected networks: the role of connector nodes. Phys. Rev. Lett. 112(24), 248701 (2014)CrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Allen-Perkins, A., de Assis, T.A., Pastor, J.M., Andrade, R.F.: Relaxation time of the global order parameter on multiplex networks: the role of interlayer coupling in Kuramoto oscillators. Phys. Rev. E 96(4), 042312 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Boccaletti, S., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Royal Society (Great Britain): Proceedings of the Royal Society of London, no. v. 58. Taylor & Francis (1895). https://books.google.co.in/books?id=60aL0zlT-90C
  6. 6.
    Cozzo, E., Banos, R.A., Meloni, S., Moreno, Y.: Contact-based social contagion in multiplex networks. Phys. Rev. E 88(5), 050801 (2013)CrossRefGoogle Scholar
  7. 7.
    De Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423(1), 53–73 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Domenico, M., Granell, C., Porter, M.A., Arenas, A.: The physics of spreading processes in multilayer networks. Nat. Phys. 12(10), 901 (2016)CrossRefGoogle Scholar
  9. 9.
    Gomez, S., Diaz-Guilera, A., Gomez-Gardenes, J., Perez-Vicente, C.J., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110(2), 028701 (2013)CrossRefGoogle Scholar
  10. 10.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)CrossRefGoogle Scholar
  11. 11.
    Magnani, M., Micenkova, B., Rossi, L.: Combinatorial analysis of multiple networks. arXiv preprint arXiv:1303.4986 (2013)
  12. 12.
    Martínez, J.H., Boccaletti, S., Makarov, V.V., Buldú, J.M.: Multiplex networks of musical artists: the effect of heterogeneous inter-layer links. arXiv preprint arXiv:1805.08711 (2018)
  13. 13.
    Mohar, B., Alavi, Y., Chartrand, G., Oellermann, O.: The Laplacian spectrum of graphs. In: Graph Theory, Combinatorics, and Applications, vol. 2(871–898), p. 12 (1991)Google Scholar
  14. 14.
    Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  16. 16.
    Radicchi, F., Arenas, A.: Abrupt transition in the structural formation of interconnected networks. Nat. Phys. 9(11), 717 (2013)CrossRefGoogle Scholar
  17. 17.
    Saumell-Mendiola, A., Serrano, M.Á., Boguná, M.: Epidemic spreading on interconnected networks. Phys. Rev. E 86(2), 026106 (2012)CrossRefGoogle Scholar
  18. 18.
    Sole-Ribalta, A., De Domenico, M., Kouvaris, N.E., Diaz-Guilera, A., Gomez, S., Arenas, A.: Spectral properties of the Laplacian of multiplex networks. Phys. Rev. E 88(3), 032807 (2013)CrossRefGoogle Scholar
  19. 19.
    Wang, Y., Xiao, G.: Effects of interconnections on epidemics in network of networks. In: 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), pp. 1–4. IEEE (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringNational Institute of Technology DelhiNew DelhiIndia
  2. 2.University of Burgundy, LE21 UMR CNRS 6306DijonFrance

Personalised recommendations