Advertisement

Gaming Bot Detection: A Systematic Literature Review

  • Denis Kotkov
  • Gaurav Pandey
  • Alexander SemenovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11280)

Abstract

In online games, some players employ programs (bots) that allow them to bypass game routines and effortlessly gain virtual resources. This practice leads to negative effects, such as reduced revenue for the game development companies and unfair treatment for ordinary players. Bot detection methods act as a counter measure for such players. This paper presents a systematic literature review of bot detection in online games. We mainly focus on games that allow resource accumulation for players between game sessions. For this, we summarize the existing literature, list categories of games ignored by the scientific community, review publicly available datasets, present the taxonomy of detection methods and provide future directions on this topic. The main goal of this paper is to summarize the existing literature and indicate gaps in the body of knowledge.

Keywords

Online games Bot detection Machine learning 

References

  1. 1.
    Ways to Make Money Playing Video Games. https://ivetriedthat.com/7-ways-to-make-money-playing-video-games/. Accessed 14 Sept 2018
  2. 2.
    G2G Corporate|Gaming For A Living. https://corp.g2g.com/. Accessed 14 Sept 2018
  3. 3.
    Global Games Market Revenues 2018|Per Region & Segment|Newzoo. https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/. Accessed 14 Sept 2018
  4. 4.
    I will game: anatomy of MMO addiction. https://www.cnet.com/news/i-will-game-anatomy-of-mmo-addiction/. Accessed 14 Sept 2018
  5. 5.
    Ahmad, M.A., Keegan, B., Srivastava, J., Williams, D., Contractor, N.: Mining for gold farmers: automatic detection of deviant players in MMOGs. In: 2009 International Conference on Computational Science and Engineering, pp. 340–345. IEEE (2009)Google Scholar
  6. 6.
    Ahmad, M.A., Srivastava, J.: Behavioral data mining and network analysis in massive online games. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM 2014, pp. 673–674. ACM, New York (2014).  https://doi.org/10.1145/2556195.2556196
  7. 7.
    Alayed, H., Frangoudes, F., Neuman, C.: Behavioral-based cheating detection in online first person shooters using machine learning techniques. In: 2013 IEEE Conference on Computational Intelligence in Games (CIG), pp. 1–8. Citeseer (2013)Google Scholar
  8. 8.
    Bernardi, M.L., Cimitile, M., Martinelli, F., Mercaldo, F.: A time series classification approach to game bot detection. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, p. 6. ACM (2017)Google Scholar
  9. 9.
    Brown, N., Sandholm, T.: Superhuman AI for heads-up no-limit poker: libratus beats top professionals. Science (2017).  https://doi.org/10.1126/science.aao1733. http://science.sciencemag.org/content/early/2017/12/15/science.aao1733MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, C.L., Ku, C.C., Deng, Y.Y., Tsaur, W.J.: Automatic detection for online Games Bot with APP. In: 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), pp. 289–294. IEEE (2018)Google Scholar
  11. 11.
    Chen, K.-T., Liao, A., Pao, H.-K.K., Chu, H.-H.: Game Bot detection based on avatar trajectory. In: Stevens, S.M., Saldamarco, S.J. (eds.) ICEC 2008. LNCS, vol. 5309, pp. 94–105. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89222-9_11CrossRefGoogle Scholar
  12. 12.
    Chun, S., Choi, D., Han, J., Kim, H.K., Kwon, T.: Unveiling a socio-economic system in a virtual world: a case study of an MMORPG. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 1929–1938. International World Wide Web Conferences Steering Committee (2018)Google Scholar
  13. 13.
    Chung, Y., et al.: Game Bot detection approach based on behavior analysis and consideration of various play styles. ETRI J. 35(6), 1058–1067 (2013)CrossRefGoogle Scholar
  14. 14.
    Gianvecchio, S., Wu, Z., Xie, M., Wang, H.: Battle of Botcraft: fighting bots in online games with human observational proofs. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 256–268. ACM (2009)Google Scholar
  15. 15.
    Gurajala, S., White, J.S., Hudson, B., Matthews, J.N.: Fake Twitter accounts: profile characteristics obtained using an activity-based pattern retection approach. In: Proceedings of the 2015 International Conference on Social Media & Society, p. 9. ACM (2015)Google Scholar
  16. 16.
    Kang, A.R., Jeong, S.H., Mohaisen, A., Kim, H.K.: Multimodal game bot detection using user behavioral characteristics. SpringerPlus 5(1), 523 (2016)CrossRefGoogle Scholar
  17. 17.
    Kang, A.R., Kim, H.K., Woo, J.: Chatting pattern based game BOT detection: do they talk like us? KSII Trans. Internet Inf. Syst. 6(11), 2866–2879 (2012)Google Scholar
  18. 18.
    Kang, A.R., Woo, J., Park, J., Kim, H.K.: Online game bot detection based on party-play log analysis. Comput. Math. Appl. 65(9), 1384–1395 (2013)CrossRefGoogle Scholar
  19. 19.
    Kwon, H., Mohaisen, A., Woo, J., Kim, Y., Lee, E., Kim, H.K.: Crime scene reconstruction: online gold farming network analysis. IEEE Trans. Inf. Forensics Secur. 12(3), 544–556 (2017)Google Scholar
  20. 20.
    Laurens, P., Paige, R.F., Brooke, P.J., Chivers, H.: A novel approach to the detection of cheating in multiplayer online games. IEEE (2007)Google Scholar
  21. 21.
    Levy, Y., Ellis, T.J.: A systems approach to conduct an effective literature review in support of information systems research. Inf. Sci. 9 (2006)CrossRefGoogle Scholar
  22. 22.
    Mitterhofer, S., Krügel, C., Kirda, E., Platzer, C.: Server-side bot detection in massively multiplayer online games. IEEE Secur. Priv. 7 (2009)CrossRefGoogle Scholar
  23. 23.
    Ontan, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., Preuss, M.: A survey of real-time strategy game AI research and competition in starcraft. IEEE Trans. Comput. Intell. AI Games 5(4), 293–311 (2013).  https://doi.org/10.1109/TCIAIG.2013.2286295CrossRefGoogle Scholar
  24. 24.
    Prasetya, K., Wu, Z.D.: Artificial neural network for bot detection system in MMOGs. In: Proceedings of the 9th Annual Workshop on Network and Systems Support for Games, p. 16. IEEE Press (2010)Google Scholar
  25. 25.
    Rocha, J.B., Mascarenhas, S., Prada, R.: Game mechanics for cooperative games. ZON Digital Games 2008, 72–80 (2008)Google Scholar
  26. 26.
    Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31(3), 357–374 (2012)CrossRefGoogle Scholar
  27. 27.
    Tao, J., Xu, J., Gong, L., Li, Y., Fan, C., Zhao, Z.: NGUARD: A Game Bot Detection Framework for NetEase MMORPGs (2018)Google Scholar
  28. 28.
    Thawonmas, R., Kashifuji, Y., Chen, K.T.: Detection of MMORPG bots based on behavior analysis. In: Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology, pp. 91–94. ACM (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Denis Kotkov
    • 1
  • Gaurav Pandey
    • 1
  • Alexander Semenov
    • 1
    Email author
  1. 1.University of Jyvaskyla, Faculty of Information TechnologyJyvaskylaFinland

Personalised recommendations