Advertisement

Towards a New Evolutionary Algorithm for the Minimum Tollbooth Problem

  • Pavel KrömerEmail author
  • Jana Nowaková
  • Martin Hasal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11280)

Abstract

Minimum tollbooth problem is a well–known hard optimization problem from the area of intelligent transportation systems. It consists in the search for a set of optimum locations of a fixed number of tollbooths in a road network so that the behaviour of road users is affected in a way that mitigates the congestions in the network. In this short paper, we summarize the problem, outline the design of an evolutionary algorithm to solve it, and provide an initial computational evaluation of the feasibility of the proposed approach.

Notes

Acknowledgement

This work was supported by the Czech Science Foundation under the grant no. GJ16-25694Y, by the European Regional Development Fund under the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466), and by the project SP2018/126 of the Student Grant System, VŠB-Technical University of Ostrava.

References

  1. 1.
    Bai, L., Hearn, D.W., Lawphongpanich, S.: A heuristic method for the minimum toll booth problem. J. Glob. Optim. 48(4), 533–548 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bai, L., Stamps, M.T., Harwood, R.C., Kollmann, C.J.: An evolutionary method for the minimum toll booth problem: the methodology. J. Manag. Inf. Decis. Sci. 11(2), 33 (2008)Google Scholar
  3. 3.
    Balasch, J., Rial, A., Troncoso, C., Preneel, B., Verbauwhede, I., Geuens, C.: Pretp: privacy-preserving electronic toll pricing. In: USENIX Security Symposium, vol. 10, pp. 63–78 (2010)Google Scholar
  4. 4.
    Ban, X.J., Ferris, M.C., Tang, L., Lu, S.: Risk-neutral second best toll pricing. Transp. Res. Part B Methodol. 48, 67–87 (2013)CrossRefGoogle Scholar
  5. 5.
    Basu, S., Lianeas, T., Nikolova, E.: New complexity results and algorithms for the minimum tollbooth problem. CoRR abs/1509.07260 (2015)Google Scholar
  6. 6.
    Basu, S., Lianeas, T., Nikolova, E.: New complexity results and algorithms for the minimum tollbooth problem. In: Markakis, E., Schäfer, G. (eds.) WINE 2015. LNCS, vol. 9470, pp. 89–103. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48995-6_7CrossRefzbMATHGoogle Scholar
  7. 7.
    Dantzig, G.B.: Letter to the editor - a comment on edie’s “traffic delays at toll booths”. J. Oper. Res. Soc. Am. 2(3), 339–341 (1954)MathSciNetGoogle Scholar
  8. 8.
    Edie, L.C.: Traffic delays at toll booths. J. Oper. Res. Soc. Am. 2(2), 107–138 (1954)Google Scholar
  9. 9.
    Engelbrecht, A.: Computational Intelligence: An Introduction, 2nd edn. Wiley, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Fernando, S., et al.: Routing in road networks: the toll booth problem (2012)Google Scholar
  11. 11.
    Ferrari, P.: Road network toll pricing and social welfare. Transp. Res. Part B Methodol. 36(5), 471–483 (2002)CrossRefGoogle Scholar
  12. 12.
    Harwood, R.C., Kollmann, C.J., Stamps, M.T.: A genetic algorithm for the minimum tollbooth problem (2005)Google Scholar
  13. 13.
    Hearn, D.W., Ramana, M.V.: Solving congestion toll pricing models. In: Marcotte, P., Nguyen, S. (eds.) Equilibrium and Advanced Transportation Modelling, pp. 109–124. Springer, Boston (1998).  https://doi.org/10.1007/978-1-4615-5757-9_6CrossRefGoogle Scholar
  14. 14.
    Hearn, D.W., Yidirim, M., Ramana, M., Bai, L.: Computational methods for congestion toll pricing models. In: Proceedings of the Intelligent Transportation Systems, pp. 257–262. IEEE (2001)Google Scholar
  15. 15.
    Hearn, D.W., Yildirim, M.B.: A toll pricing framework for traffic assignment problems with elastic demand. In: Gendreau, M., Marcotte, P. (eds.) Transportation and Network Analysis: Current Trends, pp. 135–145. Springer, Boston (2002).  https://doi.org/10.1007/978-1-4757-6871-8_9CrossRefGoogle Scholar
  16. 16.
    Hong, Y.-C., Kim, D.-K., Kho, S.-Y., Kim, S.W., Yang, H.: Modeling and simulation of tandem tollbooth operations with max-algebra approach. In: Lee, Y., Kim, T., Fang, W., Ślęzak, D. (eds.) FGIT 2009. LNCS, vol. 5899, pp. 138–150. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10509-8_17CrossRefGoogle Scholar
  17. 17.
    Jongen, H., Meer, K., Triesch, E.: Optimization Theory. Springer, New York (2007).  https://doi.org/10.1007/b130886CrossRefzbMATHGoogle Scholar
  18. 18.
    Kromer, P., Platos, J., Snasel, V.: Traditional and self-adaptive differential evolution for the p-median problem. In: IEEE 2nd International Conference on Cybernetics (CYBCONF), pp. 299–304, June 2015Google Scholar
  19. 19.
    Krömer, P., Platos, J.: Evolutionary feature subset selection with compression-based entropy estimation. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, Denver, 20–24 July 2016, pp. 933–940 (2016)Google Scholar
  20. 20.
    Laval, J.A., Cho, H.W., Muñoz, J.C., Yin, Y.: Real-time congestion pricing strategies for toll facilities. Transp. Res. Part B Methodol. 71, 19–31 (2015)CrossRefGoogle Scholar
  21. 21.
    Lawphongpanich, S., Hearn, D.W.: An MPEC approach to second-best toll pricing. Math. Program. 101(1), 33–55 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-31306-0CrossRefzbMATHGoogle Scholar
  23. 23.
    Schofer, J., Morlok, E.: Development and Application of a Highway Network Design Model: Transportation Center Research Report, vol. 2. Environmental Planning Branch, Federal Highway Administration, U.S. Department of Transportation (1973). Type: ReportGoogle Scholar
  24. 24.
    Silva, A., Mateus, G.R.: Hybrid heuristics for the minimum tollbooth problem. In: IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 913–918. IEEE (2016)Google Scholar
  25. 25.
    Stefanello, F., et al.: On the minimization of traffic congestion in road networks with tolls. Ann. Oper. Res. 249(1–2), 119–139 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Storn, R.: Differential evolution design of an IIR-filter. In: Proceeding of the IEEE Conference on Evolutionary Computation ICEC, pp. 268–273. IEEE Press (1996)Google Scholar
  27. 27.
    Storn, R., Price, K.: Differential Evolution- A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical report (1995)Google Scholar
  28. 28.
    Yildirim, M.B., Hearn, D.W.: A first best toll pricing framework for variable demand traffic assignment problems. Transp. Res. Part B Methodol. 39(8), 659–678 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceVŠB Technical University of OstravaOstravaCzech Republic
  2. 2.IT4InnovationsVŠB Technical University of OstravaOstravaCzech Republic

Personalised recommendations