Investigating Potential Accident Tolerant Fuel Cladding Materials and Coatings

  • K. DaubEmail author
  • S. Y. Persaud
  • R. B. Rebak
  • R. Van Nieuwenhove
  • S. Ramamurthy
  • H. Nordin
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Thermal energy release and hydrogen generation due to breakaway oxidation of Zr fuel cladding materials are of concern in accident scenarios involving extreme temperature increase (up to 1200 °C). As a result, potential accident tolerant fuel cladding (ATFC) materials and coatings are being investigated. Physical vapor deposited CrN coatings are considered as possible protective barrier materials for Zircaloys. In addition, Fe–Cr-Al alloys are considered potential candidate materials for ATFC due the formation of protective alumina at high temperatures which maintains resistance by preventing oxide breakdown. Both CrN-coated Zircaloys and a Fe–Cr-Al model alloy were exposed to 300 °C water and steam environments up to 1200 °C to evaluate their resistance to corrosion under normal reactor operating conditions and to high temperature steam oxidation. Surface analytical techniques are used to evaluate the effectiveness of oxides and/or coatings over the 300 °C water to 1000 °C steam temperature regime.


Fuel cladding Coatings Fe–Cr-Al Corrosion Steam 


  1. 1.
    R. Van Nieuwenhove, Application of coatings and plasma treatments for nuclear applications, EHPG-Meeting, Sandefjord, 3–7 Oct 2011, Halden Reactor Project Report HWR-1028, declassifiedGoogle Scholar
  2. 2.
    G.-H. Song, X.-P. Yang, G.-L. Xiong, Z. Lou, L.-J. Chen, The corrosive behaviour of Cr/CrN multilayer coatings with different modulation periods. Vacuum 89, 136–141 (2013)CrossRefGoogle Scholar
  3. 3.
    S.B. Abusuilik, K. Inoue, Effects of intermediate surface treatments on corrosion resistance of cathodic arc PVD hard coatings. Surf. Coat. Technol. 237, 421–428 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Kilinc, S. Demirkiran, U. Sen, S. Sen, Corrosion behavior of nitride and Cr-Al-N coatings formed on AISI D2 steel. Acta Phys. Pol., A 123, 268–270 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Basu, J. Dutta Majumdar, I. Manna, Structure and properties of CrxN coating. Surf. Eng. 28, 199–204 (2012)CrossRefGoogle Scholar
  6. 6.
    F. Cai, Q. Yang, X. Huang, R. Wei, Microstructure and corrosion behavior of CrN and CrSiCN coatings. J. Mater. Eng. Perform. 19, 721–727CrossRefGoogle Scholar
  7. 7.
    S. Kaciulis, A. Mezzi, G. Montesperelli, F. Lamastra, M. Rapone, F. Casadei, T. Valente, G. Gusmano, Multi-technique study of corrosion resistant CrN/Cr/CrN and CrN: C coatings. Surf. Coat. Technol. 201, 313–319 (2006)CrossRefGoogle Scholar
  8. 8.
    U. Bardi, S.P. Chenakin, F. Ghezzi, C. Giolli, A. Goruppa, A. Lavacchi, E. Miorin, C. Pagura, A. Tolstogouzov, High-temperature oxidation of CrN/AlN multilayer coatings. Appl. Surf. Sci. 252, 1339–1349 (2005)CrossRefGoogle Scholar
  9. 9.
    H.-P. Feng, C.-H. Hsu, J.-K. Lu, Y.-H. Shy, Effects of PVD sputtered coatings on the corrosion resistance of AISI 304 stainless steel. Mater. Sci. Eng., A 347, 123–129 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Liu, Q. Bi, A. Leyland, A. Matthews, An electrochemical impedance spectroscopy study of corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrosion behaviour. Corros. Sci. 45, 1257–1273 (2003)CrossRefGoogle Scholar
  11. 11.
    R. Van Nieuwenhove, V. Andersson, J. Balak, B. Oberländer, In-pile testing of CrN, TiAlN and AlCrN Coatings on Zircaloy cladding in the Halden Reactor, 18th International Symposium on Zirconium in the Nuclear Industry, Hilton Head, USA, 2016,, STP1597 ASTM International’s STP: Selected Technical Papers on 18th International Symposium on Zirconium in the Nuclear Industry (2017)Google Scholar
  12. 12.
    E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo et al., High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: the role of Cr as a chemically active element. Corros. Sci. 52, 3394–3404 (2010)CrossRefGoogle Scholar
  13. 13.
    J.K. Bunn, R.L. Fang, M.R. Albing, A. Mehta, M.J. Kramer, M.F. Besser et al., A high-throughput investigation of Fe-Cr-Al as a novel high-temperature coating for nuclear cladding materials. Nanotechnology 26, 1–9 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Ejenstam, M. Thuvander, P. Olsson, F. Rave, P. Szakalos, Microstructural stability of Fe–Cr–Al alloys at 450–550°C. J. Nucl. Mater. 457, 291–297 (2015)CrossRefGoogle Scholar
  15. 15.
    M.H. Heinonen, K. Kokko, M.P.J. Punkkinen, E. Nurmi, J. Kollár, L. Vitos, Initial Oxidation of Fe–Al and Fe–Cr–Al alloys: Cr as an alumina booster. Oxid. Met. 76, 331–346 (2011)CrossRefGoogle Scholar
  16. 16.
    D.J. Park, H.G. Kim, J.Y. Park, Y.I. Jung, J.H. Park, Y.H. Koo, A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment. Corros. Sci. 94, 459–465 (2015)CrossRefGoogle Scholar
  17. 17.
    B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments. J. Nucl. Mater. 440, 420–427 (2013)CrossRefGoogle Scholar
  18. 18.
    R.B. Rebak, R.J. Blair, P.J. Martiniano, F. Wagenbaugh, E.J. Dolley, Resistance of Advanced Steels to Reaction with High Temperature Steam as Accident Tolerant Fuel Cladding Materials, presented at the NACE Corrosion 2014, San Antonio, TX (2014)Google Scholar
  19. 19.
    K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J. Nucl. Mater. 448, 420–435 (2014)CrossRefGoogle Scholar
  20. 20.
    S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective. J. Nucl. Mater. 448, 374–379 (2014)CrossRefGoogle Scholar
  21. 21.
    F. Liu, M. Halvarsson, K. Hellström, J.-E. Svensson, L.-G. Johansson, First three-dimensional atomic resolution investigation of thermally grown oxide on a FeCrAl alloy. Oxid. Met. 83, 441–451 (2015)CrossRefGoogle Scholar
  22. 22.
    T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, B.A. Pint, Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure. J. Nucl. Mater. 427, 396–400 (2012)CrossRefGoogle Scholar
  23. 23.
    B.A. Pint, S. Dryepondt, K.A. Unocic, D.T. Hoelzer, Development of ODS FeCrAl for compatibility in fusion and fission energy applications. J. Miner. Met. Mater. Soc. (TMS) 66, 2458–2466 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Hindam, D.P. Whittle, Microstructure, adhesion, and growth kinetics of protective scales on metals and alloys. Oxid. Met. 18, 245–284 (1982)CrossRefGoogle Scholar
  25. 25.
    S.W. Guan, W.W. Smeltzer, Oxygen solubility and a criterion for the transition from internal to external oxidation of ternary alloys. Oxid. Met. 42, 375–391 (1994)Google Scholar
  26. 26.
    Y. Niu, S. Wang, F. Gao, Z.G. Zhang, F. Gesmundo, The nature of the third-element effect in the oxidation of Fe–xCr–3at.% Al alloys in 1 atm O2 at 1000°C. Corros. Sci. 50, 345–356 (2008)CrossRefGoogle Scholar
  27. 27.
    In-Situ Lift-Out Preparation of TEM Lamellas, Carl Zeiss SMT – Nano Technology Systems Division Application Note,
  28. 28.
    L.A. Giannuzzi, F.A. Stevie, Introduction to Focused Ion Beams Instrumentation, Theory, Techniques and Practice (Springer Science and Business Media Inc, USA, 2005)CrossRefGoogle Scholar
  29. 29.
    M. Nordin, M. Larsson, S. Hogmark, Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide. Surf. Coat. Technol. 106, 234–241 (1998)CrossRefGoogle Scholar
  30. 30.
    M. Nordin, F. Ericson, Growth characteristics of multilayered physical vapour deposited TiN/TaNx on high speed steel substrate. Thin Solid Films 385, 174–181 (2001)CrossRefGoogle Scholar
  31. 31.
    H. Era, Y. Ide, A. Nino, K. Kishitake, TEM study on chromium nitride coatings deposited by reactive sputter method. Surf. Coat. Technol. 194, 265–270 (2005)CrossRefGoogle Scholar
  32. 32.
    Q. Luo, Z. Zhou, W.M. Rainforth, PEh Hovsepian, TEM-EELS of low-friction superlattice TiAlN/VN coating: the wear mechanisms. Tribol. Lett. 24, 171–178 (2006)CrossRefGoogle Scholar
  33. 33.
    C. Mitterbauer, C. Hebert, G. Kothleitner, F. Hofer, P. Schattschneider, H.W. Zandbergen, Electron energy loss-near edge structure as a fingerprint for identifying chromium nitrides. Solid State Commun. 130, 209–213 (2004)CrossRefGoogle Scholar
  34. 34.
    G. Berthomé, E. N’Dah, Y. Wouters, A. Galerie, Temperature dependence of metastable alumina formation during thermal oxidation of FeCrAl foils. Mater. Corros. 56, 389–392 (2005)CrossRefGoogle Scholar
  35. 35.
    H. Josefsson, F. Liu, J.E. Svensson, M. Halvarsson, L.G. Johansson, Oxidation of FeCrAl alloys at 500-900°C in dry O2. Mater. Corros. 56, 801–805 (2005)CrossRefGoogle Scholar
  36. 36.
    K. Daub, R. Van Nieuwenhove, H. Nordin, Investigation of the impact of coatings on the corrosion of nuclear components. J. Nucl. Mater. 467, 260–270 (2015)CrossRefGoogle Scholar
  37. 37.
    Y.Z. Huang, S. Lozano-Perez, R.M. Langford, J.M. Titchmarsh, M.L. Jenkins, Preparation of transmission electron microscopy cross-section specimens of crack tips using focused ion beam milling. J. Microsc. 207, 129–136 (2002)CrossRefGoogle Scholar
  38. 38.
    Y.Z. Huang, J.M. Titchmarsh, TEM investigation of intergranular stress corrosion cracking for 316 stainless steel in PWR environment. Acta Mater. 54, 635–641 (2006)CrossRefGoogle Scholar
  39. 39.
    S. Lozano-Perez, J.M. Titchmarsh, TEM Investigations of intergranular stress corrosion cracking in austenitic alloys in PWR environmental conditions. Mater. High Temp. 20, 573–579 (2003)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • K. Daub
    • 1
    Email author
  • S. Y. Persaud
    • 1
  • R. B. Rebak
    • 2
  • R. Van Nieuwenhove
    • 3
  • S. Ramamurthy
    • 4
  • H. Nordin
    • 1
  1. 1.Canadian Nuclear LaboratoriesChalk RiverCanada
  2. 2.GE Global ResearchSchenectadyUSA
  3. 3.Institutt for EnergiteknikkHaldenNorway
  4. 4.Surface Science WesternWestern UniversityLondonCanada

Personalised recommendations