Accident Tolerant FeCrAl Fuel Cladding: Current Status Towards Commercialization

  • Kevin G. FieldEmail author
  • Yukinori Yamamoto
  • Bruce A. Pint
  • Maxim N. Gussev
  • Kurt A. Terrani
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


FeCrAl alloys are rapidly becoming mature candidate alloys for accident tolerant fuel applications. The FeCrAl material class has shown excellent oxidation resistance in high-temperature steam environments, a key aspect of any accident tolerant cladding concept, while also being corrosion resistant, stress corrosion cracking (SCC) resistant, irradiation-induced swelling resistant, weldable, and formable. Current research efforts are focused on design, development and commercial scaling of advanced FeCrAl alloys including large-scale, thin-walled seamless tube production followed by a broad spectrum of degradation evaluations in both normal and off-normal conditions. Included in this discussion is the theoretical analysis of the alloying principles and rules, alloy composition design, and overview of the most recent empirical database on possible degradation phenomena for FeCrAl alloys. The results are derived from extensive in-pile and out-of-pile experiments and form the basis for near-term deployment of a lead-test rod and/or assembly within a commercially operating nuclear power plant.


FeCrAl Accident tolerance Commercialization 



This research was funded by the U.S. Department of Energy’s Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program and the U.S. Department of Energy, Office of Nuclear Energy, for the Nuclear Energy Enabling Technologies (NEET) program for the Reactor Materials effort. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (


  1. 1.
    K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J. Nucl. Mater. 448, 420–435 (2013). doi: CrossRefGoogle Scholar
  2. 2.
    Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao et al., Current status of materials development of nuclear fuel cladding tubes for light water reactors. Nucl. Eng. Des. 316, 131–150 (2017). doi: CrossRefGoogle Scholar
  3. 3.
    S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: A perspective. J. Nucl. Mater. 448, 374–379 (2014). doi: CrossRefGoogle Scholar
  4. 4.
    B.A. Pint, K.A. Terrani, Y. Yamamoto, L.L. Snead, Material Selection for Accident Tolerant Fuel Cladding. Metall. Mater. Trans. E. 2, 190–196 (2015)Google Scholar
  5. 5.
    B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments. J. Nucl. Mater. 440, 420–427 (2013). doi: CrossRefGoogle Scholar
  6. 6.
    K.A. Unocic, Y. Yamamoto, B.A. Pint, Effect of Al and Cr Content on Air and Steam Oxidation of FeCrAl Alloys and Commercial APMT Alloy. Oxid. Met. 87, 431–441 (2017). doi: CrossRefGoogle Scholar
  7. 7.
    D.J. Park, H.G. Kim, J.Y. Park, Y. Il Jung, J.H. Park, Y.H. Koo, A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment. Corros. Sci. 94, 459–465 (2015). doi: CrossRefGoogle Scholar
  8. 8.
    R.B. Rebak, R.J. Blair, P.J. Martiniano, F. Wagenbaugh, E.J. Dolley, Resistance of Advanced Steels to Reaction with High Temperature Steam as Accident Tolerant Fuel Cladding Materials, (n.d.). (Accessed 21 June 2017)
  9. 9.
    M. Snead, L.L. Snead, K.A. Terrani, K.G. Field, A. Worrall, K.R. Robb et al., Technology Implementation Plan ATF FeCrAl Cladding for LWR Application (Oak Ridge National Laboratory, Oak Ridge, TN, 2014)Google Scholar
  10. 10.
    Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang, L.L. Snead, Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J. Nucl. Mater. 467, 703–716 (2015). doi: CrossRefGoogle Scholar
  11. 11.
    H.G. Read, H. Murakami, Microstructural influences on the decomposition of an Al-containing ferritic stainless steel. Appl. Surf. Sci. 94, 334–342 (1996)CrossRefGoogle Scholar
  12. 12.
    H.G. Read, H. Murakami, K. Hono, Al partioning in MA 956, An ODS ferritic stainless steel. Scr. Mater. 36, 355–361 (1997)CrossRefGoogle Scholar
  13. 13.
    C. Capdevila, M.K. Miller, J. Chao, Phase separation kinetics in a Fe–Cr–Al alloy. Acta Mater. 60, 4673–4684 (2012). doi: CrossRefGoogle Scholar
  14. 14.
    M. Pinkas, Z. Foxman, N. Froumin, P. Hähner, L. Meshi, Sensitivity of thermo-electric power measurements to α–α′ phase separation in Cr-rich oxide dispersion strengthened steels. J. Mater. Sci. 50, 4629–4635 (2015). doi: CrossRefGoogle Scholar
  15. 15.
    Z. Száraz, G. Török, V. Kršjak, P. Hähner, SANS investigation of microstructure evolution in high chromium ODS steels after thermal ageing. J. Nucl. Mater. 435, 56–62 (2013). doi: CrossRefGoogle Scholar
  16. 16.
    G. Electric, 630A Mark V Maritime Nuclear Steam Generator Design Studies Summary, GEMP-359. (1965)Google Scholar
  17. 17.
    P.J. Grobner, The 885F (475C) embrittlement of ferritic stainless steels. Metall. Trans. 4, 251–260 (1973)CrossRefGoogle Scholar
  18. 18.
    R.O. Williams, Further studies of the iron-chromum system. Trans. Met. Soc. AIME. 212, 497–502 (1958)Google Scholar
  19. 19.
    G. Bonny, D. Terentyev, L. Malerba, On the α–α′ miscibility gap of Fe–Cr alloys. Scr. Mater. 59, 1193–1196 (2008). doi: CrossRefGoogle Scholar
  20. 20.
    C.S. Wukusick, The physical metallurgy and oxidation behavior of Fe-Cr-Al-Y alloys (Cincinnati, Ohio, 1966)Google Scholar
  21. 21.
    S. Kobayashi, T. Takasugi, Mapping of 475 °C embrittlement in ferritic Fe–Cr–Al alloys. Scr. Mater. 63, 1104–1107 (2010). doi: CrossRefGoogle Scholar
  22. 22.
    J. Ejenstam, M. Thuvander, P. Olsson, F. Rave, P. Szakalos, Microstructural stability of Fe-Cr-Al alloys at 450–550 °C. J. Nucl. Mater. (2014). doi: CrossRefGoogle Scholar
  23. 23.
    N.M. George, K. Terrani, J. Powers, A. Worrall, I. Maldonado, Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors. Ann. Nucl. Energy 75, 703–712 (2015). doi: CrossRefGoogle Scholar
  24. 24.
    K.G. Field, S.A. Briggs, K. Sridharan, R.H. Howard, Y. Yamamoto, Mechanical Properties of Neutron-Irradaited Model and Commercial FeCrAl Alloys. J. Nucl. Mater. 489, 118–128 (2017)CrossRefGoogle Scholar
  25. 25.
    K.G. Field, S.A. Briggs, P.D. Edmondson, J.C. Haley, R.H. Howard, X. Hu, et al., Database on Performance of Neutron Irradiated FeCrAl Alloys, ORNL/TM-2016/335. (2016)Google Scholar
  26. 26.
    K.G. Field, M. Snead, Y. Yamamoto, B.A. Pint, K.A. Terrani, Materials properties of FeCrAl alloys for nuclear power production applications, ORNL/TM-2017/186. (2017)Google Scholar
  27. 27.
    J.R. Regina, J.N. Dupont, A.R. Marder, The effect of chromium on the weldability and microstructure of Fe-Cr-Al weld cladding. Weld. J. 86, 170–178 (2007)Google Scholar
  28. 28.
    M.N. Gussev, K.G. Field, Y. Yamamoto, Design, Properties, and Weldability of Advanced Oxidation-Resistant FeCrAl Alloys. Mater. Des. 129, 227–238 (2017)CrossRefGoogle Scholar
  29. 29.
    J.N. Dupont, J.R. Regina, K. Adams, Improving the weldability of fecral weld overlay coatings, Foss. Energy Mater. Conf. 131–137 (2007)Google Scholar
  30. 30.
    Y. Yamamoto, Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes (2015)Google Scholar
  31. 31.
    Y. Yamamoto, M.N. Gussev, B.A. Pint, K.A. Terrani, Examination of Compressive Deformation Routes for Production of ATF FeCrAl Tubes, ORNL/TM-2016/509. (2016)Google Scholar
  32. 32.
    W. Chubb, S. Alfant, A.A. Bauer, E.J. Jablonowski, F.R. Shober, R.F. Dickerson, Constitution, metallurgy, and oxidation resistance of iron-chromium-aluminum alloys: BMI-1298, (1958)Google Scholar
  33. 33.
    K.G. Field, X. Hu, K.C. Littrell, Y. Yamamoto, L.L. Snead, Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys. J. Nucl. Mater. 465, 746–755 (2015). doi: CrossRefGoogle Scholar
  34. 34.
    S.A. Briggs, P.D. Edmondson, Y. Yamamoto, C. Littrell, R.H. Howard, C.R. Daily et al., A combined APT and SANS investigation of alpha prime phase precipitation in neutron-irradiated model FeCrAl alloys. Acta Mater. 129, 217–228 (2016)CrossRefGoogle Scholar
  35. 35.
    P.D. Edmondson, S.A. Briggs, Y. Yamamoto, R.H. Howard, K. Sridharan, K.A. Terrani et al., Irradiation-enhanced α′ precipitation in model FeCrAl alloys. Scr. Mater. 116, 112–116 (2016). doi: CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Kevin G. Field
    • 1
    Email author
  • Yukinori Yamamoto
    • 1
  • Bruce A. Pint
    • 1
  • Maxim N. Gussev
    • 2
  • Kurt A. Terrani
    • 2
  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Fusion and Materials for Nuclear Systems DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations