Advertisement

Effect of pH on Hydrogen Pick-Up and Corrosion in Zircaloy-4

  • James Sayers
  • Susan Ortner
  • Kexue Li
  • Sergio Lozano-PerezEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Thermal desorption spectroscopy, secondary ion mass spectroscopy and scanning transmission electron microscopy have been used to investigate the effect of pH on corrosion and hydrogen pick-up behaviour in different samples of Zircaloy-4. Samples were autoclave-oxidised in pure water and at an elevated pH (with 50% deuterated water) when compared to commercial reactors. A characteristic desorption peak for hydrogen has been found at ~650 °C, which occurs when the difference in free energy between hydrogen in the metal and in the gas phase becomes positive. Electron energy loss spectroscopy provided us with a method to detect and measure the thickness of the following layers (from oxide to metal): ZrO2, a previously reported ZrO suboxide, an oxygen saturated zirconium region and the Zr metal. Overall, samples exposed to a high pH show a longer time to transition and contain far less hydrogen than those oxidised in pure water. A mechanistic explanation will be provided.

Keywords

Zircaloy-4 Hydrogen Deuterium Desorption 

References

  1. 1.
    W. Yeniscavich, R.A. Wolfe, R.M. Lieberman, Hydrogen absorption by nickel enriched zircaloy-2. J. Nucl. Mater. 3, 271–280 (1959)CrossRefGoogle Scholar
  2. 2.
    W.E. Berry, D.A. Vaughan, E.L. White, Hydrogen Pickup during aqueous corrosion of zirconium alloys. Corrosion 17, 109–117 (1961)CrossRefGoogle Scholar
  3. 3.
    A.T. Motta, L.-Q. Chen, Hydride formation in Zirconium Alloys. JOM 64(12), 1403–1408 (2012). doi: https://doi.org/10.1007/s11837-012-0479-x CrossRefGoogle Scholar
  4. 4.
    A. Couet, A.T. Motta, R.J. Comstock, Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics. J. Nucl. Mater. 451(1–3), 1–13 (2014). doi: https://doi.org/10.1016/j.jnucmat.2014.03.001 CrossRefGoogle Scholar
  5. 5.
    F. Garzarolli, B. Cox, P. Rudling, ANT International Report: Corrosion and Hydriding (2012)Google Scholar
  6. 6.
    M. Harada, R. Wakamatsu, M. Limback, B. Kammenzind, S.W. Dean, The effect of hydrogen on the transition behavior of the corrosion rate of Zirconium Alloys. Zirconium in the Nuclear Industry: 15th International Symposium ASTM STP 1505. 5(3), 101–117 (2008). doi: https://doi.org/10.1520/JAI101117 CrossRefGoogle Scholar
  7. 7.
    W.J. Peterson, R.E. Gilbert, G.B. Hoflund, The interaction of Hydrogen with polycrystalline Zirconium Part II. The effect of preadsorbed oxygen. Appl. Surf. Sci. 24, 121–124 (1985)CrossRefGoogle Scholar
  8. 8.
    W. Chen, L. Wang, S. Lu, Influence of oxide layer on hydrogen desorption from zirconium hydride. J. Alloys Compd. 469(1–2), 142–145 (2009). doi: https://doi.org/10.1016/j.jallcom.2008.01.157 CrossRefGoogle Scholar
  9. 9.
    N. Eliaz, D. Eliezer, E. Abramov, D. Zander, U. Koster, Hydrogen evolution from Zr-based amorphous and quasicrystalline alloys. J. Alloys Compd. 305, 272–281 (2000)CrossRefGoogle Scholar
  10. 10.
    J.-H. Huang, S.-P. Huang, Hydriding of zirconium alloys in hydrogen gas. Mater. Sci. Eng., A 161(2), 247–253 (1993). doi: https://doi.org/10.1016/0921-5093(93)90519-K CrossRefGoogle Scholar
  11. 11.
    D. Wongsawaeng, S. Jaiyen, High-temperature absolute hydrogen desorption kinetics of zirconium hydride under clean and oxidized surface conditions. J. Nucl. Mater. 403(1–3), 19–24 (2010). doi: https://doi.org/10.1016/j.jnucmat.2010.05.025 CrossRefGoogle Scholar
  12. 12.
    Y.S. Li, P.C. Wong, K.A.R. Mitchell, XPS investigations of the interactions of hydrogen with thin films of zirconium oxide II. Effects of heating a 26 Å thick film after treatment with a hydrogen plasma. Appl. Surf. Sci. 89(3), 263–269 (1995). doi: https://doi.org/10.1016/0169-4332(95)00032-1 CrossRefGoogle Scholar
  13. 13.
    A. Yilmazbayhan, E. Breval, A.T. Motta, R.J. Comstock, Transmission electron microscopy examination of oxide layers formed on Zr alloys. J. Nucl. Mater. 349(3), 265–281 (2006). doi: https://doi.org/10.1016/j.jnucmat.2005.10.012 CrossRefGoogle Scholar
  14. 14.
    M. Preuss, P. Frankel, S. Lozano-Perez et al., Studies regarding corrosion mechanisms in Zirconium Alloys. Zirconium in the Nuclear Industry: 16th International Symposium ASTM STP 1529. 8(9) (2011). doi: https://doi.org/10.1520/JAI103246 CrossRefGoogle Scholar
  15. 15.
    D. Pêcheur, J. Godlewski, P. Billot, J. Thomazet, Microstructure of oxide films formed during the waterside corrosion of the zircaloy-4 cladding in lithiated environment. Zirconium in the Nuclear Industry: 16th International Symposium ASTM STP 1295. 1295, 94–113 (1996). Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0030289887&partnerID=tZOtx3y1
  16. 16.
    N. Ni, S. Lozano-Perez, M.L. Jenkins et al., Porosity in oxides on zirconium fuel cladding alloys, and its importance in controlling oxidation rates. Scr Mater. 62(8), 564–567 (2010). doi: https://doi.org/10.1016/j.scriptamat.2009.12.043 CrossRefGoogle Scholar
  17. 17.
    N. Ni, D. Hudson, J. Wei et al., How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys. Acta Mater. 60(20), 7132–7149 (2012). doi: https://doi.org/10.1016/j.actamat.2012.09.021 CrossRefGoogle Scholar
  18. 18.
    P. Tejland, H.-O. Andrén, Origin and effect of lateral cracks in oxide scales formed on zirconium alloys. J. Nucl. Mater. 430(1–3), 64–71 (2012). doi: https://doi.org/10.1016/j.jnucmat.2012.06.039 CrossRefGoogle Scholar
  19. 19.
    N. Ni, S. Lozano-Perez, J. Sykes, C.R.M. Grovenor, Quantitative EELS analysis of zirconium alloy metal/oxide interfaces. Ultramicroscopy 111(2), 123–30 (2011). doi: https://doi.org/10.1016/j.ultramic.2010.10.020 CrossRefGoogle Scholar
  20. 20.
    K.J. Annand, I. MacLaren, M. Gass, Utilising DualEELS to probe the nanoscale mechanisms of the corrosion of Zircaloy-4 in 350 °C pressurised water. J. Nucl. Mater. 465, 390–399 (2015). doi: https://doi.org/10.1016/j.jnucmat.2015.06.022 CrossRefGoogle Scholar
  21. 21.
    S.S. Yardley, K.L. Moore, N. Ni et al., An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS. J. Nucl. Mater. 443(1–3), 436–443 (2013). doi: https://doi.org/10.1016/j.jnucmat.2013.07.053 CrossRefGoogle Scholar
  22. 22.
    Chris R.M. Grovenor, N. Ni, D. Hudson et al., Mechanisms of oxidation of fuel cladding alloys revealed by high resolution APT, TEM and SIMS analysis. Mater. Res. Soc. Symp. Proc. 1383, 101–112 (2012)CrossRefGoogle Scholar
  23. 23.
    D.H. Bradhurst, P.M. Heuer, The temperature dependence of the in-reactor oxidation of zirconium alloys in moist CO2 atmospheres from 573–868 k. J. Nucl. Mater. 96(1), 196–204 (1981). doi:http://dx.doi.org/10.1016/0022-3115(81)90233-6 CrossRefGoogle Scholar
  24. 24.
    E. Gulbransen, K. Andrew, Solubility and decomposition pressures of hydrogen in alpha-zirconium. JOM 7, 136–144 (1955)CrossRefGoogle Scholar
  25. 25.
    S. Yamanaka, T. Nishizaki, M. Uno, M. Katsura, Hydrogen dissolution into zirconium oxide. J. Alloys Compd. 293–295, 38–41 (1999)CrossRefGoogle Scholar
  26. 26.
    S. Yamanaka, Y. Fujita, M. Uno, M. Katsura, Influence of interstitial oxygen on hydrogen solubility in metals. J. Alloys Compd. 293–295, 42–51 (1999)CrossRefGoogle Scholar
  27. 27.
    M. Miyake, M. Uno, S. Yamanaka, On the zirconium–oxygen–hydrogen ternary system. J. Nucl. Mater. 270(1–2), 233–241 (1999). doi: https://doi.org/10.1016/S0022-3115(98)00779-X CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • James Sayers
    • 1
  • Susan Ortner
    • 2
  • Kexue Li
    • 1
  • Sergio Lozano-Perez
    • 1
    Email author
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK
  2. 2.National Nuclear LaboratoryCulham Science CentreAbingdon, OxfordshireUK

Personalised recommendations