High-Resolution Characterisation of Austenitic Stainless Steel in PWR Environments: Effect of Strain and Surface Finish on Crack Initiation and Propagation

  • G. PimentelEmail author
  • D. R. Tice
  • V. Addepalli
  • K. J. Mottershead
  • M. G. Burke
  • F. Scenini
  • J. Lindsay
  • Y. L. Wang
  • S. Lozano-Perez
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Initiation and propagation of cracks under simulated primary water conditions and different slow strain rates have been studied for an austenitic 304-type stainless steel. Two surface finishes were used to better understand the conditions that trigger stress corrosion cracking (SCC). The main objective is to identify the mechanism(s) that govern the initiation and propagation of SCC and the influence of microstructure. Crack morphology, stress localisation and local chemical composition were characterized for all samples studied. The characterization methodology includes scanning electron microscopy (SEM), 3D focused ion beam (FIB), Transmission Kikuchi Diffraction (TKD), and analytical scanning transmission electron microscopy (STEM).


Stress corrosion cracking (SCC) Slow strain rate test (SSRT) Transmission kikuchi diffraction (TKD) Electron energy loss spectroscopy (EELS) 



EELS data were acquired with JEOL ARM200 microscope funded by the EPSRC, grant EP/K040375/1.


  1. 1.
    K. Arioka, T. Yamada, T. Terachi, R.W. Staehle, Intergranular stress corrosion cracking behavior of austenitic stainless steels in hydrogenated high-temperature water. Corrosion 62, 74–83 (2006)CrossRefGoogle Scholar
  2. 2.
    K. Arioka, T. Yamada, T. Terachi, G. Chiba, Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water. Corrosion 63, 1114–1123 (2007)CrossRefGoogle Scholar
  3. 3.
    T. Terachi, T. Yamada, T. Miyamoto, K. Arioka, K. Fukuya, Corrosion behaviour of stainless steels in simulated PWR primary water-effect of chromium content in alloys and dissolved hydrogen. J. Nucl. Sci. Technol. 45, 975–984 (2008)CrossRefGoogle Scholar
  4. 4.
    R.W. Staehle, in Critical Analysis of “Tight Cracks”, 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems 2007, vol. 3, 2007, pp. 1877–1957Google Scholar
  5. 5.
    S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, L.E. Thomas, Linking grain boundary microstructure to stress corrosion cracking of cold-rolled alloy 690 in pressurized water reactor primary water. Corrosion 69, 953–963 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Lozano-Perez, J. Dohr, M. Meisnar, K. Kruska, SCC in PWRs: Learning from a bottom up approach. Metall. Mater. Trans. E 1, 194–210 (2014)Google Scholar
  7. 7.
    L.E. Thomas, S.M. Bruemmer, High-resolution characterization of intergranular attack and stress corrosion cracking of Alloy 600 in high-temperature primary water. Corrosion 56(6), 572–587 (2000)CrossRefGoogle Scholar
  8. 8.
    S. Lozano-Perez, J.M. Titchmarsh, TEM investigations of intergranular stress corrosion cracking in austenitic alloys in PWR environmental conditions. Materials. High Temp. 20(4), 573–579 (2003)CrossRefGoogle Scholar
  9. 9.
    K. Kruska, S. Lozano-Perez, D.W. Saxey, T. Terachi, T. Yamada, G.D.W. Smith, in 3D Atom-Probe characterization of Stress and Cold-Work in Stress Corrosion Cracking of 304 Stainless Steel, 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 2, 2011, pp. 891–898Google Scholar
  10. 10.
    S. Lozano-Perez, L.C. Gontard, Understanding stress corrosion cracking with electron tomography. Microsc. Microanal. 14, 642–643 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Lozano-Perez, M.R. Kilburn, T. Yamada, T. Terachi, C.A. English, C.R.M. Grovenor, High-resolution imaging of complex crack chemistry in reactor steels by NanoSIMS. J. Nucl. Mater. 374, 61–68 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Meisnar, A. Vilalta-Clemente, A. Gholinia, M. Moody, A.J. Wilkinson, N. Huin, S. Lozano-Perez, Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels. Micron 75, 1–10 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Meisnar, A. Vilalta-Clemente, M. Moody, K. Arioka, S. Lozano-Perez, A mechanistic study of the temperature dependence of the stress corrosion crack growth rate in SUS316 stainless steels exposed to PWR primary water. Acta Mater. 114, 15–24 (2016)CrossRefGoogle Scholar
  14. 14.
    B. Schaffer, W. Grogger, G. Kothleitner, Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102(1), 27–36 (2004)CrossRefGoogle Scholar
  15. 15.
    S. Lozano-Perez, V. de Castro Bernal, R.J. Nicholls, Achieving sub-nanometre particle mapping with energy-filtered TEM. Ultramicroscopy 109(10), 1217–1228 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Bosman, M. Watanabe, D.T.L. Alexander, V.J. Keast, Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106(11–12), 1024–1032 (2006)CrossRefGoogle Scholar
  17. 17.
    F. de la Peña, M.-H. Berger, J.-F. Hochepied, F. Dynys, O. Stephan, M. Walls, Mapping titanium and tin oxide phases using EELS: An application of independent component analysis. Ultramicroscopy 111(2), 169–176 (2011)CrossRefGoogle Scholar
  18. 18.
    V.S. Raja, T. Shoji, Stress Corrosion Cracking: Theory and practice (Woodhead Publishing Limited, UK, 2011), p. 220CrossRefGoogle Scholar
  19. 19.
    H. Abe, Y. Watanabe, Role of δ-ferrite in stress corrosion cracking retardation near fusion boundary of 316NG welds. J. Nucl. Mater. 424, 57–61 (2012)CrossRefGoogle Scholar
  20. 20.
    Y.H. Lu, Z.R. Chen, X.F. Zhu, T. Shoji, SCC behaviours of austenitic stainless steel Z3CN20-09 M in high temperature water. Mater. Sci. Technol. 30(15), 1944–1950 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Lozano-Perez, T. Yamada, T. Terachi, M. Schröder, C.A. English, G.D.W. Smith, C.R.M. Grovenor, B.L. Eyre, Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content. Acta Materalia 57, 5361–5381 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Lozano-Perez, K. Kruska, I. Iyengar, T. Terachi, T. Yamada, The role of cold work and applied stress on surface oxidation of 304 stainless steel. Corros. Sci. 56, 78–85 (2012)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • G. Pimentel
    • 1
    Email author
  • D. R. Tice
    • 2
  • V. Addepalli
    • 2
  • K. J. Mottershead
    • 2
  • M. G. Burke
    • 3
  • F. Scenini
    • 3
  • J. Lindsay
    • 3
  • Y. L. Wang
    • 3
  • S. Lozano-Perez
    • 1
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK
  2. 2.AMEC Foster WheelerCheshireUK
  3. 3.University of Manchester, Material Performance CentreManchesterUK

Personalised recommendations