High Resolution Transmission Electron Microscopy of Irradiation Damage in Inconel X-750

  • C. D. JudgeEmail author
  • H. Rajakumar
  • A. Korinek
  • G. Botton
  • J. Cole
  • J. W. Madden
  • J. H. Jackson
  • P. D. Freyer
  • L. A. Giannuzzi
  • M. Griffiths
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The effects of irradiation on Inconel® (Inconel is a registered trademark of Special Metals Corporation and its subsidiaries) X-750, have been shown to lead to embrittlement and intergranular fracture. This is now widely accepted to be a result of intergranular helium bubbles over the fluence range studied. This paper provides a quantitative assessment and a detailed discussion of the radiation-induced defects including; helium bubbles (size and density distribution, and grain boundary area fraction), dislocation loops and stacking fault tetrahedra, and the disordering and dissolution of secondary gamma prime precipitates. The microstructural evolution will be presented and discussed as a function of dose (from ~5.5 to ~80 dpa), helium concentration (~1300 to ~25,000 appm helium), and irradiation temperature (~120–280 to ~300–330 °C).


Radiation damage Helium embrittlement Inconel x-750 TEM 


Acknowledgements and Collaborating Partners

The work presented in this manuscript was supported by the Canadian Nuclear Laboratory Science and Technology Program, the CANDU Owners Group Joint Projects 4363, 4452 and 4491. The work was performed, in part, using instrumentation provided by the Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science user Facilities at Oak Ridge National Laboratory, and the National Scientific User Facilities Industrial Program via Idaho National Laboratories. Microscopy was performed, in part, using instrumentation at Westinghouse Electric Company, LCC, the Canadian Centre of Electron Microscopy at McMaster University, and at Canadian Nuclear Laboratories.


  1. 1.
    H.K. Zhang, Z. Yao, G. Morin, M. Griffiths, J. Nucl. Mater. 451(1–3), 88–96 (2014)CrossRefGoogle Scholar
  2. 2.
    H.K. Zhang, Z. Yao, C. Judge, M. Griffiths, J. Nucl. Mater. 443(1–3), 49–58 (2013)CrossRefGoogle Scholar
  3. 3.
    H.K. Zhang, Z. Yao, M.R. Daymond, M.A. Kirk, J. Nucl. Mater. 445(1–3), 227–234 (2014)CrossRefGoogle Scholar
  4. 4.
    Zhang, H.K. Irradiation Induced Damage in Candu Spacer Material Inconel X-750 (Queen’s University, 2013)Google Scholar
  5. 5.
    F. Carsughi, H. Derz, P. Ferguson, G. Pott, W. Sommer, H. Ullmaier, J. Nucl. Mater. 264(1–2), 78–88 (1999)CrossRefGoogle Scholar
  6. 6.
    R.S. Nelson, J.A. Hudson, D.J. Mazey, J. Nucl. Mater. 44(3), 318–330 (1972)CrossRefGoogle Scholar
  7. 7.
    A. Jenssen, P. Efsing, J. Sundberg, in Influence of Heat Treatment, Aging and Neutron Irradiation on Fracture Toughness in X-750, ed. by T.R. Allen, L. Nelson. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors (TMS, 2005) pp. 73–85Google Scholar
  8. 8.
    C. Abromeit, H. Wollenberger, S. Matsumura, C. Kinoshita, J. Nucl. Mater. 276(1–3), 104–113 (2000)CrossRefGoogle Scholar
  9. 9.
    G.A. Young, N. Lewis, M. Hanson, W. Matuszyk, B. Wiersma, S.C. Gonzalez, KAPL Report LM-01K034; Microstructural and Microchemical Characterization of Dual Step Aged Alloy X-750 and Its Relationship to Environmentally Assisted Cracking (May 2001)Google Scholar
  10. 10.
    A. Waheed, 6400-37000-220-001; Test Results of Inconel X-750 Bottom Guide Spring in Hanaro BundleGoogle Scholar
  11. 11.
    D.M. Symons, J. Nucl. Mater. 264, 225–231 (1998)Google Scholar
  12. 12.
    C.A. Grove, L.D. Petzold, in Mechanisms of Stress Corrosion Cracking of Alloy X-750 in High Purity Water. International Conference on Corrosion of Nickel Base Alloys, Cincinnati, Ohio, 23–25 Oct 1984 (ASM, Cincinnati, Ohio, 1985)Google Scholar
  13. 13.
    O.T. Woo, C.D. Judge, H. Nordin, D. Finlayson, C. Andrei, The Microstructure of Unirradiated and Neutron Irradiated Inconel X-750, in Microscopy and Microanalysis (Nashville, Tennessee, 2011)CrossRefGoogle Scholar
  14. 14.
    C.D. Judge, M. Griffiths, L. Walters, M. Wright, G.A. Bickel, O.T. Woo, M. Stewart, S.R. Douglas, F. Garner, Embrittlement of nickel alloys in a Candu* reactor environment. In Effects of Radiation on Nuclear Materials, vol. 25, ed. by T. Yamamoto (ASTM International, Anaheim, CA, 2012), pp. 161–175Google Scholar
  15. 15.
    C.D. Judge, N. Gauquelin, L. Walters, M. Wright, J.I. Cole, J. Madden, G.A. Botton, M. Griffiths, J. Nucl. Mater. 457, 165–172 (2015)CrossRefGoogle Scholar
  16. 16.
    C.D. Judge, The Effects of Irradiation on Inconel X-750 (McMaster University, 2015)Google Scholar
  17. 17.
    M. Griffiths, G.A. Bickel, S.A. Donohue, P. Feenstra, C.D. Judge, L. Walters, M.D. Wright, in Degradation of Ni-Alloy Components in Candu Reactor Cores. 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Asheville, North Carolina, USA, 11–15 Aug 2013 (Asheville, North Carolina, USA, 2013)Google Scholar
  18. 18.
    M. Griffiths, D. Poff, Z. Yao, H.K. Zhang, in Performance of Ni Alloy Components in Candu Reactors. International Conference on Materials Science and Technology, Montreal, Quebec, Canada, 27–31 Oct 2013 (Montreal, Quebec, Canada, 2013)Google Scholar
  19. 19.
    M. Griffiths, G.A. Bickel, S.R. Douglas, J. Energy Power Eng. 6, 188–194 (2012)Google Scholar
  20. 20.
    M. Griffiths, AECL Nuclear Rev. 2(1) (2013)Google Scholar
  21. 21.
    L.R. Greenwood, B.M. Oliver, F.A. Garner, T. Muroga, J. Nucl. Mat. 258–263(Part 1(0)), 985–989 (1998)Google Scholar
  22. 22.
    L.R. Greenwood, D.W. Kneff, R.P. Skowronski, F.M. Mann, J. Nucl. Mater. 123(1–3), 1002–1010 (1984)CrossRefGoogle Scholar
  23. 23.
    L.R. Greenwood, D.G. Graczyk, D.W. Kneff, J. Nucl. Mat. 155–157(Part 2(0)), 1335–1339 (1988)Google Scholar
  24. 24.
    L.R. Greenwood, F.A. Garner, B.M. Oliver, J. Nucl. Mat. 191–194(Part B(0)), 1051–1055 (1992)Google Scholar
  25. 25.
    L.R. Greenwood, F.A. Garner, B.M. Oliver, J. Nucl. Mat. 212–215(Part 1(0)), 492–497 (1994)Google Scholar
  26. 26.
    L.R. Greenwood, J. Nucl. Mater. 115(2–3), 137–142 (1983)CrossRefGoogle Scholar
  27. 27.
    C. Abromeit, S. Matsumura, Philos. Mag. A 82(11), 2287–2302 (2002)Google Scholar
  28. 28.
    E. Camus, C. Abromeit, F. Bourdeau, N. Wanderka, H. Wollenberger, Phys. Rev. B 54(5) (1996)CrossRefGoogle Scholar
  29. 29.
    H. Wiedersich, Rad. Effects 12, 111–125 (1972)CrossRefGoogle Scholar
  30. 30.
    G.V. Kidson, J. Nucl. Mater. 118, 115–120 (1983)CrossRefGoogle Scholar
  31. 31.
    P.T. Heald, M.V. Speight, Acta Metall. 23(11), 1389–1399 (1975)CrossRefGoogle Scholar
  32. 32.
    P.T. Heald, J.E. Harbottle, J. Nucl. Mater. 67, 229–233 (1977)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • C. D. Judge
    • 1
    Email author
  • H. Rajakumar
    • 1
  • A. Korinek
    • 2
  • G. Botton
    • 2
  • J. Cole
    • 3
  • J. W. Madden
    • 3
  • J. H. Jackson
    • 3
  • P. D. Freyer
    • 4
  • L. A. Giannuzzi
    • 5
  • M. Griffiths
    • 1
  1. 1.Canadian Nuclear LaboratoriesChalk RiverUSA
  2. 2.McMaster UniversityHamiltonCanada
  3. 3.Idaho National LaboratoryIdaho FallsUSA
  4. 4.Westinghouse Electric CorporationCranberry TwpUSA
  5. 5.LA Giannuzzi & AssociatesFort MyersUSA

Personalised recommendations