Spherical Nanoindentation Stress-Strain Analysis of Ion-Irradiated Tungsten

  • Siddhartha PathakEmail author
  • Jordan S. Weaver
  • Cheng Sun
  • Yongqiang Wang
  • Surya R. Kalidindi
  • Nathan A. Mara
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


This paper discusses applications of spherical nanoindentation stress-strain curves in characterizing the local mechanical behavior of materials with modified surfaces. Using ion-irradiated tungsten as a specific example, this paper demonstrates that a simple variation of the indenter size (radius) can identify the depth of the radiation-induced-damage zone, as well as quantify the behavior of the damaged zone itself. Using corresponding local structure information from electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) we look at (a) the elastic response, elasto-plastic transition, and onset of plasticity in ion-irradiated tungsten, zirconium and 304 stainless steel under indentation, and compare their relative mechanical behavior to the unirradiated state, (b) correlating these changes to the different grain orientations as a function of (c) irradiation from different sources (such as He, W, and He+W for tungsten samples).


Nanoindentation stress-strain Radiation damage gradient Stress saturation Electron back-scattered diffraction Transmission electron microscopy 



The authors acknowledge funding from Department of Energy, Nuclear Engineering Enabling Technologies (DOE-NEET)—Reactor Materials program # DE-FOA-0000799, and University of California Office of the President (UCOP) under Award Number 12—LR237801 for this work. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. SP gratefully acknowledges funding from the Los Alamos National Laboratory Director’s Postdoctoral Fellowship and University of Nevada, Reno start-up faculty funds for this work.


  1. 1.
    J.T. Busby, M.C. Hash, G.S. Was, The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 336(2–3), 267–278 (2005)CrossRefGoogle Scholar
  2. 2.
    P. Hosemann, J.G. Swadener, D. Kiener, G.S. Was, S.A. Maloy, N. Li, An exploratory study to determine applicability of nano-hardness and micro-compression measurements for yield stress estimation. J. Nucl. Mater. 375(1), 135–143 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Kiener, P. Hosemann, S.A. Maloy, A.M. Minor, In situ nanocompression testing of irradiated copper. Nat. Mater. 10(8), 608–613 (2011)CrossRefGoogle Scholar
  4. 4.
    N. Li, N.A. Mara, Y.Q. Wang, M. Nastasi, A. Misra, Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles. Scr. Mater. 64(10), 974–977 (2011)CrossRefGoogle Scholar
  5. 5.
    A.C. Fischer-Cripps, Nanoindentation, 2nd edn. (Springer, 2004)Google Scholar
  6. 6.
    P. Hosemann, D. Kiener, Y. Wang, S.A. Maloy, Issues to consider using nano indentation on shallow ion beam irradiated materials. J. Nucl. Mater. 425(1–3), 136–139 (2012)CrossRefGoogle Scholar
  7. 7.
    P. Hosemann, C. Vieh, R.R. Greco, S. Kabra, J.A. Valdez, M.J. Cappiello, S.A. Maloy, Nanoindentation on ion irradiated steels. J. Nucl. Mater. 389(2), 239–247 (2009)CrossRefGoogle Scholar
  8. 8.
    S.R. Kalidindi, S. Pathak, Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater. 56(14), 3523–3532 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Pathak, J. Shaffer, S.R. Kalidindi, Determination of an effective zero-point and extraction of indentation stress-strain curves without the continuous stiffness measurement signal. Scr. Mater. 60(6), 439–442 (2009)CrossRefGoogle Scholar
  10. 10.
    S. Pathak, S.R. Kalidindi, Spherical nanoindentation stress–strain curves. Mater. Sci. Eng. R: Rep. 91, 1–36 (2015)CrossRefGoogle Scholar
  11. 11.
    S.J. Vachhani, R.D. Doherty, S.R. Kalidindi, Effect of the continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation. Acta Mater. 61(10), 3744–3751 (2013)CrossRefGoogle Scholar
  12. 12.
    D. Raabe, N. Zaafarani, R.N. Singh, F. Roters, S. Zaefferer, Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater. 54(7), 1863–1876 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Rester, C. Motz, R. Pippan, The deformation-induced zone below large and shallow nanoindentations: a comparative study using EBSD and TEM. Philos. Mag. Lett. 88(12), 879–887 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Pathak, D. Stojakovic, S.R. Kalidindi, Measurement of the local mechanical properties in polycrystalline samples using spherical nano-indentation and orientation imaging microscopy. Acta Mater. 57(10), 3020–3028 (2009)CrossRefGoogle Scholar
  15. 15.
    S.J. Vachhani, S.R. Kalidindi, Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater. 90, 27–36 (2015)CrossRefGoogle Scholar
  16. 16.
    J.S. Weaver, M.W. Priddy, D.L. McDowell, S.R. Kalidindi, On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater. 117, 23–34 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Pathak, J. Michler, K. Wasmer, S.R. Kalidindi, Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J. Mater. Sci. 47(2), 815–823 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Petzow, Metallographic Etching: Techniques for Metallotraphy, Ceramography, Plastography, 2nd edn. ASM International (1999)Google Scholar
  19. 19.
    ASM Handbook: Volume 9: Metallography And Microstructures. ASM International. ISBN: 978-0-87170-706-2 (2004)Google Scholar
  20. 20.
    J. Ziegler, J. Biersack, The stopping and range of ions in matter, in: Treatise on Heavy-Ion Science, ed. by D.A. Bromley (Springer, USA, 1985), pp. 93–129CrossRefGoogle Scholar
  21. 21.
    J.F. Ziegler, J.P. Biersack, SRIM Program (IBM Corp., Yorktown, NY, 2008)Google Scholar
  22. 22.
    M.L. Jenkins, M.A. Kirk, Characterisation of Radiation Damage by Transmission Electron Microscopy. CRC Press (2000)Google Scholar
  23. 23.
    S. Basu, A. Moseson, M.W. Barsoum, On the determination of spherical nanoindentation stress–strain curves. J. Mater. Res. 21(10), 2628–2637 (2006)CrossRefGoogle Scholar
  24. 24.
    J.S. Field, M.V. Swain, Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10(1), 101–112 (1995)CrossRefGoogle Scholar
  25. 25.
    J.L. Bucaille, S. Stauss, E. Felder, J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51(6), 1663–1678 (2003)CrossRefGoogle Scholar
  26. 26.
    A.E. Giannakopoulos, S. Suresh, Determination of elastoplastic properties by instrumented sharp indentation. Scr. Mater. 40(10), 1191–1198 (1999)CrossRefGoogle Scholar
  27. 27.
    H. Hertz, Miscellaneous Papers (MacMillan and Co., Ltd., New York, 1896)Google Scholar
  28. 28.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1987)Google Scholar
  29. 29.
    I.N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–56 (1965)CrossRefGoogle Scholar
  30. 30.
    J.S. Weaver, A. Khosravani, A. Castillo, S.R. Kalidindi, High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Integrating Mater. Manufact. Innov. 5(1), 1–20 (2016)CrossRefGoogle Scholar
  31. 31.
    M.W. Barsoum, M. Radovic, T. Zhen, P. Finkel, S.R. Kalidindi, Dynamic elastic hysteretic solids and dislocations, Phys. Rev. Lett. 94(8), 085501-1 (2005)Google Scholar
  32. 32.
    H. Bei, Y.F. Gao, S. Shim, E.P. George, G.M. Pharr, Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B. 77(6) (2008)Google Scholar
  33. 33.
    J.R. Morris, H. Bei, G.M. Pharr, E.P. George, Size effects and stochastic behavior of nanoindentation pop in. Phys. Rev. Lett. 106(16) (2011)Google Scholar
  34. 34.
    S. Shim, H. Bei, E.P. George, G.M. Pharr, A different type of indentation size effect. Scr. Mater. 59(10), 1095–1098 (2008)CrossRefGoogle Scholar
  35. 35.
    C.A. Schuh, Nanoindentation studies of materials. Mater. Today 9(5), 32–40 (2006)CrossRefGoogle Scholar
  36. 36.
    B.R. Donohue, A. Ambrus, S.R. Kalidindi, Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater. 60(9), 3943–3952 (2012)CrossRefGoogle Scholar
  37. 37.
    J.J. Vlassak, W.D. Nix, Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A (Physics of Condensed Matter, Defects and Mechanical Properties) 67(5), 1045–1056 (1993)CrossRefGoogle Scholar
  38. 38.
    J.J. Vlassak, W.D. Nix, Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42(8), 1223–1245 (1994)CrossRefGoogle Scholar
  39. 39.
    S.A. Syed Asif, J.B. Pethica, Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A. (Physics of Condensed Matter: Structure, Defects and Mechanical Properties) 76(6), 1105–1118 (1997)CrossRefGoogle Scholar
  40. 40.
    Y. Gao, H. Bei, Strength statistics of single crystals and metallic glasses under small stressed volumes. Prog. Mater Sci. 82, 118–150 (2016)CrossRefGoogle Scholar
  41. 41.
    Z. Wang, H. Bei, E.P. George, G.M. Pharr, Influences of surface preparation on nanoindentation pop-in in single-crystal Mo. Scr. Mater. 65(6), 469–472 (2011)CrossRefGoogle Scholar
  42. 42.
    S. Pathak, D. Stojakovic, R. Doherty, S.R. Kalidindi, Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. J. Mater. Res. Focus Issue Indentation Methods Adv. Mater Res. 24(3), 1142–1155 (2009)Google Scholar
  43. 43.
    S. Pathak, J.L. Riesterer, S.R. Kalidindi, J. Michler, Understanding pop-ins in spherical nanoindentation. Appl. Phys. Lett. 105(16), 161913 (2014)CrossRefGoogle Scholar
  44. 44.
    S. Shim, H. Bei, M.K. Miller, G.M. Pharr, E.P. George, Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater. 57(2), 503–510 (2009)CrossRefGoogle Scholar
  45. 45.
    T.A. Michalske, J.E. Houston, Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46(2), 391–396 (1998)CrossRefGoogle Scholar
  46. 46.
    S. Suresh, T.G. Nieh, B.W. Choi, Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41(9), 951–957 (1999)CrossRefGoogle Scholar
  47. 47.
    M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, B.N. Singh, The microstructure and associated tensile properties of irradiated fcc and bcc metals. J. Nucl. Mater. 276, 114–122 (2000)CrossRefGoogle Scholar
  48. 48.
    M. Miyamoto, D. Nishijima, M.J. Baldwin, R.P. Doerner, Y. Ueda, K. Yasunaga, N. Yoshida, K. Ono, Microscopic damage of tungsten exposed to deuterium-helium mixture plasma in PISCES and its impacts on retention property. J. Nucl. Mater. 415(1), S657–S660 (2011)CrossRefGoogle Scholar
  49. 49.
    D.K. Patel, H.F. Al-Harbi, S.R. Kalidindi, Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements. Acta Mater. 79, 108–116 (2014)CrossRefGoogle Scholar
  50. 50.
    T. Diaz de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, M.J. Caturla, Multiscale modelling of plastic flow localization in irradiated materials. Nature 406(6798), 871–874 (2000)CrossRefGoogle Scholar
  51. 51.
    N.A. Mara, D. Bhattacharyya, J.P. Hirth, P. Dickerson, A. Misra, Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97(2), 021909 (2010)CrossRefGoogle Scholar
  52. 52.
    A. Patra, D.L. McDowell, Crystal plasticity-based constitutive modelling of irradiated bcc structures. Philos. Mag. 92(7), 861–887 (2012)CrossRefGoogle Scholar
  53. 53.
    J.S. Weaver, C. Sun, Y. Wang, S.R. Kalidindi, N.A. Mara, S. Pathak, Comparing irradiation induced damage in He, W and He+W ion irradiated tungsten using spherical nanoindentation (2017 submitted) Google Scholar
  54. 54.
    S. Pathak, J.S. Weaver, S.R. Kalidindi, Y. Wang, R. Doerner, N. Mara, Probing nanoscale damage gradients with spherical nanoindentation. Scientific Reports. 7, 11918 (2017). doi:
  55. 55.
    S. Pathak, S.J. Vachhani, K.J. Jepsen, H.M. Goldman, S.R. Kalidindi, Assessment of lamellar level properties in mouse bone utilizing a novel spherical nanoindentation data analysis method. J. Mech. Behav. Biomed. Mater (2012). doi: CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Siddhartha Pathak
    • 1
    Email author
  • Jordan S. Weaver
    • 2
  • Cheng Sun
    • 3
  • Yongqiang Wang
    • 3
  • Surya R. Kalidindi
    • 4
  • Nathan A. Mara
    • 3
    • 2
  1. 1.Chemical and Materials EngineeringUniversity of NevadaRenoUSA
  2. 2.Los Alamos National LaboratoryCenter for Integrated NanotechnologiesLos AlamosUSA
  3. 3.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA
  4. 4.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations