A Kinetic Study of Order-Disorder Transition in Ni–Cr Based Alloys

  • B. StephanEmail author
  • D. Jacob
  • F. Delabrouille
  • L. Legras
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Alloy 690 is a nickel-based alloy (60% Ni, 30% Cr, 10% Fe) used in nuclear Pressurized Water Reactors (PWR) for different components and welds (steam generator tubes etc.). They are subjected to thermal ageing up to 60 years which could lead to an order-disorder transition (Ni2Cr ordered phase formation) by a diffusion-assisted mechanism. This transformation might modify mechanical properties and is suspected to influence the stress corrosion resistance of the affected components. To study ordering kinetics, hardness, thermoelectric power (TEP) alongside transmission electron microscope (TEM) observations were conducted on Ni-33%Cr alloys with different iron contents (0–3 wt%) after various ageing thermal treatments. The ordering activation energies have been determined: they are found to be independent of the iron content. A correlation between macroscopic properties and TEM diffraction results is proposed. Finally, the distribution of iron between matrix and ordered domains was studied.


Ordering reaction Nickel-based alloys Thermoelectric power Iron content 



The authors gratefully acknowledge Yannick Fontaine and his team for sample preparation, Christian Vincent for thermal ageing and Sebastien Saillet for TEP data analysis. The TEM national facility in Lille (France) is supported by the Conseil Regional du Nord-Pas de Calais, the European Regional Development Fund (ERDF), and the Institut National des Sciences de l’Univers (INSU, CNRS). Financial support from EDF in the CSI project by Emilien Burger is also gratefully acknowledged.


  1. 1.
    E. Frely, Étude des interactions entre effets d’irradiation et effets d’ordre chimique dans les alliages ternaires Ni–Cr–Fe. Ph.D. thesis (Université Paris Sud 11, 1997)Google Scholar
  2. 2.
    P.S. Pao et al., Fatigue and fracture of a Ni2Cr ordered intermetallic alloy. Mater. Sci. Eng., A 153(1), 532–537 (1992)CrossRefGoogle Scholar
  3. 3.
    G.A. Young et al., Effect of long range order on the stress corrosion susceptibility of a nickel-33 at% chromium alloy. Corrosion 72(11), 1433–1437 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Marucco, Atomic ordering and α′-Cr phase precipitation in long-term aged Ni3Cr and Ni2Cr alloys. J. Mater. Sci. 30(16), 4188–4194 (1995)CrossRefGoogle Scholar
  5. 5.
    M.A. Abd-Elhady, G.A. Sargent, A study of the effects of phosphorus on the kinetics and mechanism of the order-disorder transformation in an Ni2Cr Alloy. J. Mater. Sci. 21(10), 3643–3647 (1986)CrossRefGoogle Scholar
  6. 6.
    G.A. Young, J.D. Tucker, D.R. Eno, The kinetics of long range ordering in Ni–Cr and Ni–Cr–Fe alloys. Paper presented at the proceedings of the 16th international conference on environmental degradation of materials in nuclear power system water-reactors, Asheville, North Carolina, 2013Google Scholar
  7. 7.
    F. Delabrouille et al., Long range ordering of alloy 690. Paper presented in 14th international conference on environmental degradation of materials in nuclear power system water-reactors, Virginia Beach, Virginia, 2009Google Scholar
  8. 8.
    A. Marucco, XRD studies on atomic ordering of Ni–Cr based alloys. Mater. Sci. Forum 79, 575–580 (1991)CrossRefGoogle Scholar
  9. 9.
    A. Marucco, Effects of composition on the order-disorder transformation in Ni–Cr based alloys. Key Eng. Mater. 48, 77–90 (1991)CrossRefGoogle Scholar
  10. 10.
    A. Marucco, B. Nath, Phase transformation in Ni–Cr Alloys containing Fe. Phase Transform. 87, 588–591 (1987)Google Scholar
  11. 11.
    A. Marucco, Atomic ordering in the Ni–Cr–Fe system. Mater. Sci. Eng., A 189(1–2), 267–276 (1994)CrossRefGoogle Scholar
  12. 12.
    M.A. Abd-Elhady, G.A. Sargent, A study of the effects of phosphorus content, cold rolling and heat treatment on the kinetics of ordering in Ni2Cr alloys. J. Mater. Sci. 21(8), 2657–2663 (1986)CrossRefGoogle Scholar
  13. 13.
    A. Verma et al., Resistivity and transmission electron microscopy investigations of ordering transformation in stoichiometric Ni2(Cr0.5Mo0.5) alloy. Metall. Mater. Trans. A 43A(9), 3078–3085 (2012)CrossRefGoogle Scholar
  14. 14.
    E. Nagy, J. Tóth, Ordering in alloy Cu3Au—III. J. Phys. Chem. Solids 24(8), 1043–1047 (1963)CrossRefGoogle Scholar
  15. 15.
    G. Erez, P.S. Rudman, Long-range order in Fe–Al alloys—II thermoelectric power. J. Phys. Chem. Solids 18(4), 307–315 (1961)CrossRefGoogle Scholar
  16. 16.
    H. Cooper, P. Schwed, R.W. Webeler, Thermoelectric power of AuCu in nonequilibrium states. J. Appl. Phys. 27(5), 516–518 (1956)CrossRefGoogle Scholar
  17. 17.
    M.D. Blue, Thermoelectric effects in copper-gold alloys. Phys. Rev. 117(1), 134–138 (1960)CrossRefGoogle Scholar
  18. 18.
    J.P. Massoud et al., Thermal ageing of PWR duplex stainless steel components—development of a thermoelectrical technique as a non destructive method of ageing. Paper presented at the 7th international conference on nuclear engineering, Tokyo, Japan, 1999Google Scholar
  19. 19.
    R. Vincent, P.A. Midgley, Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53(3), 271–282 (1994)CrossRefGoogle Scholar
  20. 20.
    W.L. Bragg, E.J. Williams et al., The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Charact. 145(855), 699–730 (1934)CrossRefGoogle Scholar
  21. 21.
    Y.L. Lu et al., Strengthening domains in a Ni–21Cr–17Mo alloy. Scr. Mater. 56(2), 121–124 (2007)CrossRefGoogle Scholar
  22. 22.
    B. Gwalani et al., Experimental investigation of the ordering pathway in a Ni-33 at.%Cr alloy. Acta Mater. 115, 372–384 (2016)CrossRefGoogle Scholar
  23. 23.
    P.E.A. Turchi, L. Kaufman, Z.-K. Liu, Modeling of Ni–Cr–Mo based alloys: part I—phase stability. Calphad 30(1), 70–87 (2006)CrossRefGoogle Scholar
  24. 24.
    P.E.A. Turchi, L. Kaufman, Z.-K. Liu, Modeling of Ni–Cr–Mo based alloys: part II—kinetics. Calphad 31(2), 237–248 (2007)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • B. Stephan
    • 1
    Email author
  • D. Jacob
    • 2
  • F. Delabrouille
    • 1
  • L. Legras
    • 1
  1. 1.Matériaux et Mécanique des Composants, EDF Lab les RenardièresEcuellesFrance
  2. 2.CNRS, INRA, ENSCL, UMR 8207—UMET—Unité Matériaux et Transformations, University of LilleLilleFrance

Personalised recommendations