Hydrogen Trapping by Irradiation-Induced Defects in 316L Stainless Steel

  • Anne-Cécile BachEmail author
  • Frantz Martin
  • Cécilie Duhamel
  • Stéphane Perrin
  • François Jomard
  • Jérôme Crépin
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The irradiation-induced defects in stainless steel internal components of pressurized water reactors combined with hydrogen uptake during the oxidation process could be a key parameter in the mechanism for Irradiation-Assisted Stress Corrosion Cracking (IASCC). The ultimate aim of this study is to characterize the effects of irradiation defects on hydrogen uptake during the oxidation of an austenitic stainless steel (SS) in primary water. The focus was made on the interactions between hydrogen and these defects. A heat-treated 316L SS containing a low amount of defects is compared with ion implanted samples. Both materials were characterized by Transmission Electron Microscopy (TEM). Hydrogen uptake was then promoted by cathodic charging using deuterium as isotopic tracer for hydrogen. The deuterium distribution was first characterized by SIMS (Secondary Ion Mass Spectrometry) profiles. This technique highlighted some deuterium segregation in link with the localization of implantation-induced defects, i.e. dislocation loops and cavities. Using TDS (Thermal Desorption Spectrometry) experimental results and literature data, a numerical model was used to simulate the deuterium profiles, providing diffusion and trapping/detrapping information associated with irradiation defects in the 316L SS.


Hydrogen trapping Irradiation defects Austenitic stainless steel Thermal desorption Modeling 



The authors would like to thank Y. Serruys, E. Bordas and Team JANNuS(DMN/JANNUS, CEA Saclay) for their support and assistance in conducting the Fe irradiation. The authors would also like to acknowledge K. Rousseau(SERMA TECHNOLOGIES, Grenoble, France) for TEM FIB sampling.


  1. 1.
    P. Scott, A review of irradiation assisted stress corrosion cracking. J. Nucl. Mater. 211(2), 101–122 (1994)CrossRefGoogle Scholar
  2. 2.
    G.S. Was, Y. Ashida, P.L. Andresen, Irradiation-assisted stress corrosion cracking. Corros. Rev. 29(1–2), 7–49 (2011)Google Scholar
  3. 3.
    G. Pressouyre, Trap theory of hydrogen embrittlement. Acta Metall. 28(7), 895–911 (1980)CrossRefGoogle Scholar
  4. 4.
    A.-M. Brass, J. Chene, Hydrogen uptake in 316L stainless steel: consequences on the tensile properties. Corros. Sci. 48(10), 3222–3242 (2006)CrossRefGoogle Scholar
  5. 5.
    I.M. Robertso, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren, Hydrogen embrittlement understood. Metall. Mater. Trans. B 46(3), 1085–1103 (2015)CrossRefGoogle Scholar
  6. 6.
    N. Totsuka, Z. Szklarska-Smialowska, Effect of electrode potential on the hydrogen-induced IGSCC of alloy 600 in an aqueous solution at 350 ℃. Corrosion 43(12), 734–738 (1987)CrossRefGoogle Scholar
  7. 7.
    R. Rios, T. Magnin, D. Noel, O. de Bouvier, Critical analysis of alloy 600 stress corrosion cracking mechanisms in primary water. Metall. Mater. Trans. A 26(4), 925–939 (1995)CrossRefGoogle Scholar
  8. 8.
    X. Zhong, S.C. Bali, T. Shoji, Effects of dissolved hydrogen and surface condition on the intergranular stress corrosion cracking initiation and short crack growth behavior of non-sensitized 316 stainless steel in simulated PWR primary water. Corros. Sci. 118, 143–157 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Dumerval, S. Perrin, L. Marchetti, M. Tabarant, F. Jomard, Y. Wouters, Hydrogen absorption associated with the corrosion mechanism of 316L stainless steels in primary medium of Pressurized Water Reactor (PWR). Corros. Sci. 85, 251–257 (2014)CrossRefGoogle Scholar
  10. 10.
    N. Hashimoto, E. Wakai, J.P. Robertson, Damage structure in austenitic stainless steel 316LN irradiated at low temperature in the HFIR. J. Electron. Microsc. (Tokyo) 48(5), 575 (1999)CrossRefGoogle Scholar
  11. 11.
    D.J. Edwards, E.P. Simonen, S.M. Bruemmer, Evolution of fine-scale defects in stainless steels neutron-irradiated at 275 ℃. J. Nucl. Mater. 317(1), 13–31 (2003)CrossRefGoogle Scholar
  12. 12.
    G.S. Was, P.L. Andresen, Stress corrosion cracking behavior of alloys in aggressive nuclear reactor core environments. Corrosion 63(1), 19–45 (2007)CrossRefGoogle Scholar
  13. 13.
    O.K. Chopra, A.S. Rao, A review of irradiation effects on LWR core internal materials—IASCC susceptibility and crack growth rates of austenitic stainless steels. J. Nucl. Mater. 409(3), 235–256 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Dong, B.H. Sencer, F.A. Garner, E.A. Marquis, Microchemical and microstructural evolution of AISI 304 stainless steel irradiated in EBR-II at PWR-relevant dpa rates. J. Nucl. Mater. 467(2), 692–702 (2015)CrossRefGoogle Scholar
  15. 15.
    G.S. Was, J.T. Busby, T. Allen, E.A. Kenik, A. Jenssen, S.M. Bruemmer, J. Gan, A.D. Edwards, P.M. Scott, P.L. Andreson, Emulation of neutron irradiation effects with protons: validation of principle. J. Nucl. Mater. 300(2), 198–216 (2002)CrossRefGoogle Scholar
  16. 16.
    G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer Science & Business Media, 2007)Google Scholar
  17. 17.
    R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 310, pp. 75–80 (2013)CrossRefGoogle Scholar
  18. 18.
    D. Chen, K. Murakami, K. Dohi, K. Nishida, N. Soneda, Z. Li, L. Liu, N. Sekimura, Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 365, pp. 503–508 (2015)CrossRefGoogle Scholar
  19. 19.
    T. Miura, K. Fujii, H. Nishioka, K. Fukuya, Effects of hydrogen on interaction between dislocations and radiation-induced defects in austenitic stainless steels. J. Nucl. Mater. 442 (1–3), pp. S735–S739 (2013) (Supplement 1)CrossRefGoogle Scholar
  20. 20.
    J. Gupta, J. Hure, B. Tanguy, L. Laffont, M.-C. Lafont, E. Andrieu, Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation. J. Nucl. Mater. 476, 82–92 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Jambon, L. Marchetti, M. Sennour, F. Jomard, J. Chêne, SIMS and TEM investigation of hydrogen trapping on implantation defects in a nickel-based superalloy. J. Nucl. Mater. 466, 120–133 (2015)CrossRefGoogle Scholar
  22. 22.
    C. Hurley, F. Martin, L. Marchetti, J. Chêne, C. Blanc, E. Andrieu, Numerical modeling of thermal desorption mass spectroscopy (TDS) for the study of hydrogen diffusion and trapping interactions in metals. Int. J. Hydrog. Energy 40(8), 3402–3414 (2015)CrossRefGoogle Scholar
  23. 23.
    C. Hurley, Kinetic study of hydrogen-material interactions in nickel base alloy 600 and stainless steel 316L through coupled experimental and numerical analysis (Ph-D thesis, Institut National Polytechnique de Toulouse 2015)Google Scholar
  24. 24.
    W.A. Swansiger, R. Bastasz, Tritium and deuterium permeation in stainless steels: influence of thin oxide films. J. Nucl. Mater. 85, 335–339 (1979)CrossRefGoogle Scholar
  25. 25.
    P. Tison, Influence de l’hydrogène sur le comportement des métaux (Ph-D thesis, Université Pierre et Marie Curie Paris 6, 1984)Google Scholar
  26. 26.
    C. Shan, A. Wu, Q. Chen, The behavior of diffusion and permeation of tritium through 316L stainless steel. J. Nucl. Mater. 179, 322–324 (1991)CrossRefGoogle Scholar
  27. 27.
    K.S. Forcey, D.K. Ross, J.C.B. Simpson, D.S. Evans, Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications. J. Nucl. Mater. 160(2), 117–124 (1988)CrossRefGoogle Scholar
  28. 28.
    D.M. Grant, D.L. Cummings, D.A. Blackburn, Hydrogen in 316 steel—diffusion, permeation and surface reaction. J. Nucl. Mater. 152(2), 139–145 (1988)CrossRefGoogle Scholar
  29. 29.
    A. McNabb, P.K. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans. Metall. Soc. AIME 227, 618–627 (1963)Google Scholar
  30. 30.
    A.H.M. Krom, A. Bakker, Hydrogen trapping models in steel. Metall. Mater. Trans. B 31(6), 1475–1482 (2000)CrossRefGoogle Scholar
  31. 31.
    J. Chêne, A.M. Brass, Hydrogen transport by mobile dislocations in nickel base superalloy single crystals. Scr. Mater. 40(5), 537–542 (1999)CrossRefGoogle Scholar
  32. 32.
    T. Kato, K. Nakata, J. Kuniya, S. Ohnuki, H. Takahashi, Cavity formation by hydrogen injection in electron-irradiated austenitic stainless steel. J. Nucl. Mater., 155–157, Part 2, pp. 856–860 (1988)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Anne-Cécile Bach
    • 1
    • 2
    Email author
  • Frantz Martin
    • 1
  • Cécilie Duhamel
    • 2
  • Stéphane Perrin
    • 3
  • François Jomard
    • 4
  • Jérôme Crépin
    • 2
  1. 1.DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME)CEA, Université Paris-SaclayGif-sur-YvetteFrance
  2. 2.MINES ParisTech, PSL Research University MAT- Centre des matériauxEvryFrance
  3. 3.Laboratoire d’étude des Ciments et Bitumes pour le ConditionnementCEA, DEN, DE2D, SEADBagnols-sur-CèzeFrance
  4. 4.Groupe d’Etude de la Matière CondenséeCNRS, UVSQVersailles cedexFrance

Personalised recommendations