Comparative Study on Short Time Oxidation of Un-Irradiated and Protons Pre-Irradiated 316L Stainless Steel in Simulated PWR Water

  • M. BoissonEmail author
  • L. Legras
  • F. Carrette
  • O. Wendling
  • T. Sauvage
  • A. Bellamy
  • P. Desgardin
  • L. Laffont
  • E. Andrieu
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Achieving a better understanding of the Irradiation Assisted Stress Corrosion Cracking resistance is one of the issues to improve the durability of Pressurized Water Reactors. To do so, assessing the interaction of irradiation defects with oxidation of internal vessel bolts, made of 316L alloy, is crucial. In this work we studied the effect of protons pre-irradiations at 1 dpa on the very first steps of oxidation (1 min < t < 24 h) in simulated PWR environment. The morphology of the oxide layer was investigated using optical microscopy and Scanning Electron Microscopy. The oxidation kinetics for short term oxidation is discussed based on the obtained results. It was observed that crystallographic orientation has an effect on the oxidation process. The level of cold-work and the presence of precipitates were taken into account and both seemed to accelerate the oxidation kinetic. Finally, irradiation also tended to speed-up the oxidation phenomenon.


Irradiation Oxidation Austenitic stainless steel IASCC 



The authors would like to thank O. Wendling, T. Sauvage, A. Bellamy and P. Desgardin for setting up the irradiation experiment and carrying out the irradiations and, T. Girard (EDF R&D) for conducting the oxidation tests. The authors would also like to acknowledge M. Mahé (EDF R&D) for the EDXS analysis of the precipitates.


  1. 1.
    S.M. Bruemmer et al., Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals. J. Nucl. Mater. 274(3), 299–314 (1999)CrossRefGoogle Scholar
  2. 2.
    G.S. Was, P.L. Andresen, Irradiation-assisted stress-corrosion cracking in austenitic alloys. JOM 44(4), 8–13 (1992)CrossRefGoogle Scholar
  3. 3.
    C. Pokor et al., Irradiation damage in 304 and 316 stainless steels: experimental investigation and modeling. Part I: Evolution of the microstructure. J. Nucl. Mater. 326(1), 19–29 (2004)CrossRefGoogle Scholar
  4. 4.
    D.J. Edwards, E.P. Simonen, S.M. Bruemmer, Evolution of fine-scale defects in stainless steels neutron-irradiated at 275 ℃. J. Nucl. Mater. 317(1), 13–31 (2003)CrossRefGoogle Scholar
  5. 5.
    S.J. Zinkle, P.J. Maziasz, R.E. Stoller, Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel. J. Nucl. Mater. 206(2), 266–286 (1993)CrossRefGoogle Scholar
  6. 6.
    S.J. Zinkle, R.L. Sindelar, Defect microstructures in neutron-irradiated copper and stainless steel. J. Nucl. Mater. 155, 1196–1200 (1988)CrossRefGoogle Scholar
  7. 7.
    A. Etienne, Etude des effets d’irradiations et de la nanostructuration dans des aciers austénitiques inoxydables (Ph.D thesis, Université de Rouen, Rouen, 2009)Google Scholar
  8. 8.
    P.J. Maziasz, Overview of microstructural evolution in neutron-irradiated austenitic stainless steels. J. Nucl. Mater. 205, 118–145 (1993)CrossRefGoogle Scholar
  9. 9.
    T.R. Allen et al., The effect of dose rate on the response of austenitic stainless steels to neutron radiation. J. Nucl. Mater. 348(1–2), 148–164 (2006)CrossRefGoogle Scholar
  10. 10.
    B.H. Sencer et al., Microstructural origins of radiation-induced changes in mechanical properties of 316 L and 304 L austenitic stainless steels irradiated with mixed spectra of high-energy protons and spallation neutrons. J. Nucl. Mater. 296(1–3), 112–118 (2001)CrossRefGoogle Scholar
  11. 11.
    D.J. Edwards et al., Influence of irradiation temperature and dose gradients on the microstructural evolution in neutron-irradiated 316SS. J. Nucl. Mater. 317(1), 32–45 (2003)CrossRefGoogle Scholar
  12. 12.
    E.C. Potter, G.M.W. Mann, Oxidation of mild steel in high-temperature aqueous systems. in Presented at the 1st International Congress of Metallic Corrosion (London, 1961) 417Google Scholar
  13. 13.
    S. Perrin et al., Influence of irradiation on the oxide film formed on 316 L stainless steel in PWR primary water. Oxid. Met. 80(5–6), 623–633 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Gupta, Intergranular Stress Corrosion Cracking of Ion Irradiated 304L Stainless Steel in PWR Environment (Ph.D thesis, Institut National Polytechnique de Toulouse, Toulouse, 2016)Google Scholar
  15. 15.
    M. Dumerval, Effet des défauts d’implantation sur la corrosion des aciers inoxydables austénitiques en milieu primaire des réacteurs à eau pressurisée (Ph.D thesis, Université de Grenoble, Grenoble, 2014)Google Scholar
  16. 16.
    A. Machet, Etude des premiers stades d’oxydation d’alliages inoxydables dans l’eau à haute température (Ph.D thesis, Université Pierre et Marie Curie—Paris VI, Paris, 2004)Google Scholar
  17. 17.
    S. Gardey, Etude de la corrosion généralisée des alliages 600, 690 et 800 en milieu primaire—Contribution à la compréhension des mécanismes (Ph.D thesis, Université Pierre et Marie Curie, Paris, 1998)Google Scholar
  18. 18.
    R. Soulas, Effet de la cristallographie sur les premiers stades de l’oxydation des aciers austénitiques 316L, (Ph.D thesis, Institut National Polytechnique de Grenoble, Grenoble, 2012)Google Scholar
  19. 19.
    R. Soulas et al., TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment. J. Mater. Sci. 48(7), 2861–2871 (2013)CrossRefGoogle Scholar
  20. 20.
    X. Sun, Study of deformed layer formed during mechnical stages of specimen preparation for EBSD and TEM (Report EDF R&D and PHELMA, Moret Sur Loing, 2016)Google Scholar
  21. 21.
    G.S. Was, T.R. Allen, Radiation damage from different particle types, Radiat. Eff. Solids—NATO Science Series II—Mathematics, Physics and Chemistry (235, Springer, 2007), 65–98Google Scholar
  22. 22.
    G.S. Was, Fundamentals of Radiation Materials Science (Springer, Berlin, 2007)Google Scholar
  23. 23.
    G.S. Was et al., Emulation of neutron irradiation effects with protons: validation of principle. J. Nucl. Mater. 300, 198–216 (2002)CrossRefGoogle Scholar
  24. 24.
    B.H. Sencer et al., Proton irradiation emulation of PWR neutron damage microstructures in solution annealed 304 and cold-worked 316 stainless steels. J. Nucl. Mater. 323(1), 18–28 (2003)CrossRefGoogle Scholar
  25. 25.
    J.F. Ziegler, J.P. Biersack, in The Stopping and Range of Ions in Matter,ed. by D.A. Bromley. Treatise on Heavy-Ion Science (6: Astrophysics, Chemistry, and Condensed Matter, Boston, MA: Springer US, 1985), 93–129Google Scholar
  26. 26.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B: Interact. Mater. Atoms 268(11–12), 1818–1823 (2010)CrossRefGoogle Scholar
  27. 27.
    R.E. Stoller et al., On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75–80 (2013)CrossRefGoogle Scholar
  28. 28.
    T. Couvant, A. Herbelin, Adaptation d’une cellule d’oxydation sur la boucle Titane - Cahier des clauses techniques particulières (Note EDF, EDF R&D, Moret-sur-Loing, H-T29-2007-03241-FR, 2008)Google Scholar
  29. 29.
    G. Wranglen, Pitting and sulphide inclusions in steel. Corros. Sci. 14(5), 331–349 (1974)CrossRefGoogle Scholar
  30. 30.
    J. Stewart, D.E. Williams, The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions. Corros. Sci. 33(3), 457–474 (1992)CrossRefGoogle Scholar
  31. 31.
    T.L. Sudesh, L. Wijesinghe, D.J. Blackwood, Real time pit initiation studies on stainless steels: the effect of sulphide inclusions. Corros. Sci. 49(4), 1755–1764 (2007)CrossRefGoogle Scholar
  32. 32.
    M. Warzee et al., Effect of surface treatment on the corrosion of stainless steels in high-temperature water and steam. J. Electrochem. Soc. 112(7), 670–674 (1965)CrossRefGoogle Scholar
  33. 33.
    S.E. Ziemniak, M. Hanson, P.C. Sander, Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water. Corros. Sci. 50(9), 2465–2477 (2008)CrossRefGoogle Scholar
  34. 34.
    S. Ghosh, M.K. Kumar, V. Kain, High temperature oxidation behavior of 304L stainless steel—Effect of surface working operations. Appl. Surf. Sci. 264, 312–319 (2013)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • M. Boisson
    • 1
    • 3
    Email author
  • L. Legras
    • 1
  • F. Carrette
    • 1
  • O. Wendling
    • 2
  • T. Sauvage
    • 2
  • A. Bellamy
    • 2
  • P. Desgardin
    • 2
  • L. Laffont
    • 3
  • E. Andrieu
    • 3
  1. 1.EDF R&DEDF Lab Les Renardières—MMCMoret Sur LoingFrance
  2. 2.CNRS, CEMHTI UPR3079Univ. OrléansOrléansFrance
  3. 3.CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, ENSIACETToulouse Cedex 4France

Personalised recommendations