Advanced Characterization of Hydrides in Zirconium Alloys

  • S. M. HanlonEmail author
  • S. Y. Persaud
  • F. Long
  • M. R. Daymond
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The mechanical properties of zirconium alloys are affected by the presence of hydrides. The strain fields around hydrides, which are affected by the size, orientation, and hydride phase, are believed to influence the apparent hysteresis between solubility limits on heating and cooling. TEM characterization of dislocation fields near hydrides in Zircaloy-4 specimens, which were exposed to 300 °C primary-water conditions for 600 h, was performed both before and after a heating and cooling cycle. In addition, EELS characterization is provided before heating. In situ TEM imaging/recording and nano-diffraction allowed monitoring of the morphology of dissolving hydrides throughout the temperature cycling. No dislocations in the matrix surrounding the hydrides were visible prior to heating; however, when the hydrides dissolved, dislocations were visible in the space the hydrides had previously occupied, providing a map of the original hydride distribution. These dislocation ‘nests’ are likely the preferential sites for subsequent hydride precipitation and elucidate the so-called ‘memory effect’. Advancing the understanding of hydride formation kinetics, hydride morphology, and hydrogen solid solubility limits can help to reduce uncertainties and conservatism when addressing the risks of hydrogen embrittlement and hydride cracking in zirconium components.


Zirconium Hydrides Hydrogen embrittlement Oxidation Transmission electron microscopy Electron energy loss spectroscopy Focused ion beam 


  1. 1.
    B.A. Cheadle, The Physical Metallurgy of Zirconium Alloys (No. CRNL–1208, Atomic Energy of Canada Limited, 1975)Google Scholar
  2. 2.
    V.F. Urbanic, M. Griffiths, Microstructural aspects of corrosion and hydrogen ingress in Zr-2.5 Nb, in Zirconium in the Nuclear Industry: Twelfth International Symposium. ASTM International (2000)Google Scholar
  3. 3.
    J.E. Bailey, Electron microscope observations on the precipitation of zirconium hydride in zirconium. Acta Metall. 11(4), 267–280 (1963)CrossRefGoogle Scholar
  4. 4.
    M. Christensen et al., Effect of hydrogen on dimensional changes of zirconium and the influence of alloying elements: first-principles and classical simulations of point defects, dislocation loops, and hydrides, in Zirconium in the Nuclear Industry: 17th Volume. ASTM International (2015)Google Scholar
  5. 5.
    C.D. Cann et al., The effect of metallurgical factors on hydride phases in zirconium. J. Nucl. Mater. 126(3), 197–205 (1984)CrossRefGoogle Scholar
  6. 6.
    C.E. Coleman, J.F.R. Ambler, Delayed hydrogen cracking in Zr-2.5 wt% Nb alloy. Rev. Coat. Corros. 111(2 & 3), 105–157 (1979)Google Scholar
  7. 7.
    G.J.C. Carpenter, J.F. Watters, R.W. Gilbert, Dislocations generated by zirconium hydride precipitates in zirconium and some of its alloys. J. Nucl. Mater. 48(3), 267–276 (1973)CrossRefGoogle Scholar
  8. 8.
    G.J.C. Carpenter, The precipitation of γ-zirconium hydride in zirconium. Acta Metall. 26(8), 1225–1235 (1978)CrossRefGoogle Scholar
  9. 9.
    C.E. Coleman, D. Hardie, The hydrogen embrittlement of α-zirconium—A review. J. Less Common Met. 11(3), 168–185 (1966)CrossRefGoogle Scholar
  10. 10.
    D.O. Northwood, U. Kosasih, Hydrides and delayed hydrogen cracking in zirconium and its alloys. Int. Met. Rev. 28(1), 92–121 (1983)CrossRefGoogle Scholar
  11. 11.
    R. Daum, S. Majumdar, M. Billone, Experimental and analytical investigation of the mechanical behavior of high-burnup Zircaloy-4 fuel cladding, in Zirconium in the Nuclear Industry: 15th International Symposium, ASTM International (2009)Google Scholar
  12. 12.
    O. Zanellato et al., Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4. J. Nucl. Mater. 420(1), 537–547 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Nath, G.W. Lorimer, N. Ridley, The relationship between gamma and delta hydrides in zirconium-hydrogen alloys of low hydrogen concentration. J. Nucl. Mater. 49(3), 262–280 (1974)CrossRefGoogle Scholar
  14. 14.
    R.W.L. Fong, S. Spooner, Investigation of zirconium hydrides and hydrogen solubility limit in Zr-2.5 Nb alloy by small angle neutron scattering. Scr. Metall. Mater. 30(5), 649–654 (1994)CrossRefGoogle Scholar
  15. 15.
    J.H. Root et al., Kinetics of the δ to γ zirconium hydride transformation in Zr-2.5 Nb. Acta Mater. 51(7), 2041–2053 (2003)CrossRefGoogle Scholar
  16. 16.
    A.T.W. Barrow, A. Korinek, M.R. Daymond, Evaluating zirconium–zirconium hydride interfacial strains by nano-beam electron diffraction. J. Nucl. Mater. 432(1), 366–370 (2013)CrossRefGoogle Scholar
  17. 17.
    Anton Pshenichnikov, Juri Stuckert, Mario Walter, Microstructure and mechanical properties of Zircaloy-4 cladding hydrogenated at temperatures typical for loss-of-coolant accident (LOCA) conditions. Nucl. Eng. Des. 283, 33–39 (2015)CrossRefGoogle Scholar
  18. 18.
    Josiah Willard Gibbs, On the equilibrium of heterogeneous substances. Am. J. Sci. 96, 441–458 (1878)CrossRefGoogle Scholar
  19. 19.
    D.J. Cameron, R.G. Duncan, On the existence of a memory effect in hydride precipitation in cold-worked Zr-2.5% Nb. J. Nucl. Mater. 68(3), 340–344 (1977)CrossRefGoogle Scholar
  20. 20.
    J.H. Root, R.W.L. Fong, Neutron diffraction study of the precipitation and dissolution of hydrides in Zr-2.5 Nb pressure tube material. J. Nucl. Mater. 232(1), 75–85 (1996)CrossRefGoogle Scholar
  21. 21.
    Y.S. Kim et al., Precipitation of reoriented hydrides and textural change of α-zirconium grains during delayed hydride cracking of Zr–2.5% Nb pressure tube. J. Nucl. Mater. 297(3), 292–302 (2001)CrossRefGoogle Scholar
  22. 22.
    B. Nath, G.W. Lorimer, N. Ridley, Effect of hydrogen concentration and cooling rate on hydride precipitation in α-zirconium. J. Nucl. Mater. 58(2), 153–162 (1975)CrossRefGoogle Scholar
  23. 23.
    G.C. Weatherly, The precipitation of γ-hydride plates in zirconium. Acta Metall. 29(3), 501–512 (1981)CrossRefGoogle Scholar
  24. 24.
    E. Zuzek et al., The H-Zr (hydrogen-zirconium) system. J. Phase Equilib. 11(4), 385–395 (1990)Google Scholar
  25. 25.
    S. Mishra, K.S. Sivaramakrihnan, M.K. Asundi, Formation of the gamma phase by a peritectoid reaction in the zirconium-hydrogen system. J. Nucl. Mater. 45(3), 235–244 (1972)CrossRefGoogle Scholar
  26. 26.
    J.H. Root et al., Kinetics of the δ to γ zirconium hydride transformation in Zr-2.5 Nb. Acta Mater. 51(7), 2041–2053 (2003)CrossRefGoogle Scholar
  27. 27.
    T. Maimaitiyili et al., In situ observation of γ-ZrH formation by X-ray diffraction. J. Alloy. Compd. 695, 3124–3130 (2017)CrossRefGoogle Scholar
  28. 28.
    L. Lanzani, M. Ruch, Comments on the stability of zirconium hydride phases in Zircaloy. J. Nucl. Mater. 324(2), 165–176 (2004)CrossRefGoogle Scholar
  29. 29.
    G.K. Dey, S. Banerjee, P. Mukhopadhyay, Formation of gamma hydride in alpha and beta zirconium alloys. Le J. de Phys. Colloques 43(C4), C4–C327 (1982)Google Scholar
  30. 30.
    S. Hanlon et al., Stopping DHC by heating. Poster presented at: ASTM Zirconium in the Nuclear Industry—Eighteenth International Symposium, Hilton Head, SC, 15th–19th May 2016Google Scholar
  31. 31.
    P. Vizcaíno et al., Effect of crystallite orientation and external stress on hydride precipitation and dissolution in Zr2. 5% Nb. J. Nucl. Mater. 447(1), 82–93 (2014)CrossRefGoogle Scholar
  32. 32.
    A. McMinn, E.C. Darby, J.S. Schofield, The terminal solid solubility of hydrogen in zirconium alloys, in Zirconium in the Nuclear Industry: Twelfth International Symposium. ASTM International (2000)Google Scholar
  33. 33.
    C.D. Cann, A. Atrens, A metallographic study of the terminal solubility of hydrogen in zirconium at low hydrogen concentrations. J. Nucl. Mater. 88(1), 42–50 (1980)CrossRefGoogle Scholar
  34. 34.
    R.Prasath Babu et al., Nature of gallium focused ion beam induced phase transformation in 316L austenitic stainless steel. Acta Mater. 120, 391–402 (2016)CrossRefGoogle Scholar
  35. 35.
    N. Ni, S. Lozano-Perez, J. Sykes, C. Grovenor, Multi-scale characterisation of oxide on zirconium alloys. Mater. High Temp. 29, 166–170 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Hu, A. Garner, N. Ni, A. Gholinia, R.J. Nicholls, S. Lozano-Perez et al., Identifying suboxide grains at the metal-oxide interface of a corroded Zr-1.0%Nb alloy using (S)TEM, transmission-EBSD and EELS. Micron 69, 35–42 (2015)CrossRefGoogle Scholar
  37. 37.
    M.P. Puls, R.L. Tapping, Z.H. Walker, ACR-700 advances in materials. Phys. Can. 60(6), 369–381 (2004)Google Scholar
  38. 38.
    G.E. Totten, C.E. Bates, N.A. Clinton, Handbook of Quenchants and Quenching Technology (ASM International, 1993), p. 307Google Scholar
  39. 39.
    O.T. Woo, G.J.C. Carpenter, Identification of zirconium hydrides by electron energy loss spectroscopy. Scr. Metall. 20, 423–426 (1986)CrossRefGoogle Scholar
  40. 40.
    N. Ni, S. Lozano-Perez, J. Sykes, C. Grovenor, Quantitative EELS analysis of zirconium alloy metal/oxide interfaces. Ultramicroscopy 111, 123–130 (2011)CrossRefGoogle Scholar
  41. 41.
    B. de Gabory, Y. Dong, A.T. Motta, E.A. Marquis, EELS and atom probe tomography study of the evolution of the metal/oxide interface during zirconium alloy oxidation. J. Nucl. Mater. 462, 304–309 (2015)CrossRefGoogle Scholar
  42. 42.
    K.J. Annand, I. MacLaren, M. Gass, Utilising DualEELS to probe the nanoscale mechanisms of the corrosion of Zircaloy-4 in 350 °C pressurised water. J. Nucl. Mater. 465, 390–399 (2015)CrossRefGoogle Scholar
  43. 43.
    H.G. Kim, T.H. Kim, Y.H. Jeong, Oxidation characteristics of basal (0002) plane and prism (1120) plane in HCP Zr. J. Nucl. Mater. 306(1), 44–53 (2002)Google Scholar
  44. 44.
    M. Preuss, P. Frankel, S. Lozano-Perez, D. Hudson, E. Polatidis, N. Ni et al., Studies regarding corrosion mechanisms in zirconium alloys. J. ASTM Int. 8, 1–23 (2011)CrossRefGoogle Scholar
  45. 45.
    S.S. Yardley, K.L. Moore, N. Ni, J.F. Wei, S. Lyon, M. Preuss et al., An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS. J. Nucl. Mater. 443, 436–443 (2013)CrossRefGoogle Scholar
  46. 46.
    A.T. Motta, A. Couet, R.J. Comstock, Corrosion of zirconium alloys used for nuclear fuel cladding. Ann. Rev. Mater. Res. 45, 311–343 (2015)CrossRefGoogle Scholar
  47. 47.
    F. Long et al., Microstructure characterization of a hydride blister in Zircaloy-4 by EBSD and TEM. Acta Mater. 129, 450–461 (2017)CrossRefGoogle Scholar
  48. 48.
    Canadian Standards Association, Technical requirements for inservice evaluation of zirconium alloy pressure tubes in CANDU reactors, N285.8-05 (2005)Google Scholar
  49. 49.
    M.S. Veshchunov, V.E. Shestak, V.D. Ozrin, A new model of hydrogen redistribution in Zr alloy claddings during waterside corrosion in a temperature gradient. J. Nucl. Mater. 472, 65–75 (2016)CrossRefGoogle Scholar
  50. 50.
    A.M. Garde, Enhancement of aqueous corrosion of zircaloy-4 due to hydride precipitation at the metal-oxide interface, in Zirconium in the Nuclear Industry: Ninth International Symposium. ASTM International (1991)Google Scholar
  51. 51.
    S.-J. Kim et al., The effect of hydride on the corrosion of Zircaloy-4 in aqueous LiOH solution. J. Nucl. Mater. 256(2), 114–123 (1998)CrossRefGoogle Scholar
  52. 52.
    S. Sagat et al., Delayed hydride cracking in zirconium alloys in a temperature gradient. J. Nucl. Mater. 279(1), 107–117 (2000)CrossRefGoogle Scholar
  53. 53.
    G.A. McRae, C.E. Coleman, B.W. Leitch, The first step for delayed hydride cracking in zirconium alloys. J. Nucl. Mater. 396(1), 130–143 (2010)CrossRefGoogle Scholar
  54. 54.
    R.N. Singh et al., Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in Zirconium alloys, BARC report No. BARC/2003/E/034 (2003)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • S. M. Hanlon
    • 1
    Email author
  • S. Y. Persaud
    • 1
  • F. Long
    • 2
  • M. R. Daymond
    • 2
  1. 1.Canadian Nuclear LaboratoriesChalk RiverCanada
  2. 2.Nuclear Materials Group, Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations