Advertisement

Stress Corrosion Cracking Initiation of Alloy 82 in Hydrogenated Steam

  • E. Chaumun
  • J. Crépin
  • C. Duhamel
  • C. GuerreEmail author
  • E. Héripré
  • M. Sennour
  • I. de Curières
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Experiments in hydrogenated steam were performed on several U-bend specimens extracted from two Alloy 82 welds. Results demonstrated that Alloy 82 is susceptible to SCC in hydrogenated steam at 400 °C and its susceptibility depends on its chemical composition, welding process and thermal treatment. The microstructure was characterized in the apex of the U-bend specimens. Chemical analysis were performed by electron probe microanalyser (EPMA) and secondary ion mass spectrometry (SIMS) on several areas in the weld in order to correlate crack initiation with chemical heterogeneities. It was concluded that there are more cracks in the roots of the weld passes where the impurity content (sulfur, titanium and aluminum) is higher.

Keywords

Alloy 82 Hydrogenated steam Stress corrosion cracking 

Notes

Acknowledgements

The co-authors would like to thank François Jomard de l’Université de Versailles Saint Quentin en Yvelines for SIMS analysis and Lynh-Thy Tran-Hoang Mingault de MINES ParisTech for EPMA analysis.

References

  1. 1.
    H. Coriou, L. Grall, Y. Le Gall, S. Vettier, Corrosion fissurante sous contrainte de l’Inconel dans l’eau à haute température—Stress corrosion cracking of Inconel in high temperature water, 3eme colloque annuel de métallurgie—corrosion, (1959)Google Scholar
  2. 2.
    P. Scott, M.C. Meunier, Materials reliability program: review of stress corrosion cracking of alloys 182 and 82 in PWR primary water service (MRP-220). EPRI Palo Alto CA 2007, 1015427 (2007) Google Scholar
  3. 3.
    H. Hanninen, P. Aaltonen, A. Brederholm, U. Ehrnsten, H. Gripenberg, A. Toivonen, J. Pitkanen, I. Virkkunen, Dissimilar metal weld joints and their performance in nuclear power plant and oil refinery conditions. VTT Res. Notes (2006)Google Scholar
  4. 4.
    J. Hickling, Materials reliability program crack growth rates for evaluating primary water stress corrosion cracking (PWSCC) of alloy 82, 182, and 132 (MRP-115NP). EPRI Palo Alto CA 1006696 (2004)Google Scholar
  5. 5.
    S. Le Hong, C. Amzallag, J. Daret, Measurements of stress corrosion cracking rates in weld alloy 182 in primary water of PWR, in Proceedings of the 10th International conference on Environmental Degradation of Materials in Nuclear power System—Water Reactors, Lake Tahoe, USA, 2001Google Scholar
  6. 6.
    E. Chaumun, J. Crépin, C. Duhamel, C. Guerre, E. Héripré, M. Sennour, I. de Curières, SCC crack initiation in nickel based alloy welds in hydrogenated steam at 400 °C, in Proceedings of the 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Ottawa, Canada, 2015, p. 19Google Scholar
  7. 7.
    W.J. Mills, Fracture surface morphology of stress corrosion cracks in nickel-base welds, in Proceedings of the 12th International conference on Environmental Degradation of Materials in Nuclear power System—Water Reactors, Salt Lake City, Utah, USA, 2005Google Scholar
  8. 8.
    A. Jenssen, J. Sundberg, P. Efsing, The effect of weld residual stress on the crack growth rate of alloy 182 in BWR environment, in Proceeding of Fontevraud VI, Contribution of materials investigations to improve the safety and performance of LWRs, 2006Google Scholar
  9. 9.
    M.S. Garcia Redondo, J. Lapeña Gutiérrez, D. Gómez-Briceño, Crack growth rates in weld metal alloy 182 in simulated PWR conditions, in Proceeding of Fontevraud VI, Contribution of materials investigations to improve the safety and performance of LWRs, 2006Google Scholar
  10. 10.
    C. Guerre, C. Duhamel, M. Sennour, J. Crépin, M. Le Calvar, SCC crack growth rate of alloy 82 in PWR primary water conditions—effect of a thermal treatment, in Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Colorado Springs, Colorado, USA, 2011Google Scholar
  11. 11.
    E. Chaumun, Corrosion Sous Contrainte de l’Alliage 82 en vapeur d’eau hydrogénée à 400 °C: influence de la microstructure et du comportement mécanique sur l’amorçage, Ph D thesis, PSL research university, prepared at MINES ParisTech, 2016Google Scholar
  12. 12.
    D. Buisine, F. Vaillant, P. Vidal, C. Gimond, PWSCC resistance of nickel based weld metals with various chromium contents, EPRI Workshop on PWSCC of alloy 600 in PWRs (1994)Google Scholar
  13. 13.
    R.J. Jacko, R.E. Glod, A. Kroes, Accelerated corrosion testing of alloy 52 M and alloy 182 Weldment, in Proceedings of the 11th International conference on Environmental Degradation of Materials in Nuclear power System—Water Reactors, Stevenson, Washington, USA, 2003Google Scholar
  14. 14.
    G. Economy, R.J. Jacko, F.W. Pement, IGSCC behavior of alloy 600 steam generator tubing in water or steam tests above 360 °C. Corros. J. 43(12), 727–734 (1987)CrossRefGoogle Scholar
  15. 15.
    E. Chaumun, C. Guerre, C. Duhamel, M. Sennour, I. de Curières, Oxidation of alloy 82 in nominal PWR primary water at 340 °C and in hydrogenated steam at 400 °C (Proceeding of Nuclear Plant Chemistry conference, Paris, France, 2012)Google Scholar
  16. 16.
    E. Chaumun, J. Crépin, I. de Curières, C. Duhamel, C. Guerre, E. Héripré, M. Sennour, Initiation of SCC crack in nickel base weld metals: influence of microstructural features, in Proceedings of the 16th International Conference on Environmental Degradation of Materials in Nuclear Power System, Asheville, USA, 2013Google Scholar
  17. 17.
    M. Sennour, E. Chaumun, J. Crépin, C. Duhamel, F. Gaslain, C. Guerre, I. de Curières, TEM investigation on the effect of chromium content and of stress relief treatment on precipitation in alloy 82. J. Nucl. Mater. 442(1–3), 262–269 (2013)CrossRefGoogle Scholar
  18. 18.
    T. Couvant, L. Legras, F. Vaillant, J.M. Boursier, Y. Rouillon Effect of strain-hardening on stress corrosion cracking of AISI 304L stainless steel in PWR primary environment at 360 °C, in Proceedings of the 12th International conference on Environmental Degradation of Materials in Nuclear power System—Water Reactors, Salt Lake City, Utah, USA, 2005Google Scholar
  19. 19.
    C. Guerre, C. Duhamel, M. Sennour, J. Crépin, M. Le Calvar, SCC crack growth rate of alloy 82 in PWR primary water conditions—effect of a thermal treatment, in Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Colorado Springs, Colorado, 2011, pp. 1127–1139, ed. by J.T. BusbyGoogle Scholar
  20. 20.
    V. Robin, De la modélisation numérique des procédés et du soudage en particulier au comportement mécanique des assemblages, PhD Thesis of Ecole Nationale Supérieure des Mines de Saint-Etienne, 2009Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • E. Chaumun
    • 1
    • 2
  • J. Crépin
    • 2
  • C. Duhamel
    • 2
  • C. Guerre
    • 1
    Email author
  • E. Héripré
    • 3
  • M. Sennour
    • 2
  • I. de Curières
    • 4
  1. 1.Den-Service de La Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), CEAUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.MINES ParisTechPSL Research UniversityÉvryFrance
  3. 3.Laboratoire de Mécanique des SolidesEcole PolytechniquePalaiseau CedexFrance
  4. 4.IRSN, POLE SURETE NUCLEAIREFontenay-Aux-Roses CedexFrance

Personalised recommendations