Advertisement

Cell Culture Model to Study Cerebral Aneurysm Biology

  • Alejandra N. Martinez
  • Crissey L. Pascale
  • Peter S. Amenta
  • Rachel Israilevich
  • Aaron S. DumontEmail author
Chapter
Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA, volume 127)

Abstract

Mechanisms governing cerebral aneurysm (CA) formation, progression, and rupture remain incompletely understood. However, understanding such mechanisms is critical to improving treatment for patients harboring CA. In vitro studies facilitate dissecting molecular mechanisms underlying vascular pathology and allow screening of therapies that can be subsequently explored in vivo. Cerebral vascular smooth muscle cells (VSMC) are an important constituent of the vessel wall, and phenotypic modulation of these cells to a pro-inflammatory, pro-matrix remodeling phenotype appears to be important in CA pathology. We have taken a reductionist approach using cultured cerebral VSMC to further explore CA biology. We describe techniques for culturing cerebral VSMC and outline experimental approaches incorporating these cells to study CA biology.

Keywords

Vascular smooth muscle cells Cell culture Cerebral aneurysm Phenotypic modulation Inflammation 

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Albarrán-Juárez J, Kaur H, Grimm M, Offermanns S, Wettschureck N. Lineage tracing of cells involved in atherosclerosis. Atherosclerosis. 2016;251:445–53.  https://doi.org/10.1016/j.atherosclerosis.2016.06.012.CrossRefPubMedGoogle Scholar
  2. 2.
    Ali MS, Starke RM, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Owens GK, Koch WJ, Greig NH, Dumont AS. TNF-alpha induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology. J Cereb Blood Flow Metab. 2013;33:1564–73.  https://doi.org/10.1038/jcbfm.2013.109.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118:692–702.  https://doi.org/10.1161/circresaha.115.306361.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS. Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab. 2012;32:1659–76.  https://doi.org/10.1038/jcbfm.2012.84.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Coen M, Burkhardt K, Bijlenga P, Gabbiani G, Schaller K, Kövari E, Rüfenacht DA, Ruíz DSM, Pizzolato G, Bochaton-Piallat M-L. Smooth muscle cells of human intracranial aneurysms assume phenotypic features similar to those of the atherosclerotic plaque. Cardiovasc Pathol. 2013;22:339–44.  https://doi.org/10.1016/j.carpath.2013.01.083.CrossRefPubMedGoogle Scholar
  6. 6.
    Eskesen V, Rosenorn J, Schmidt K, Espersen JO, Haase J, Harmsen A, Hein O, Knudsen V, Marcussen E, Midholm S, et al. Clinical features and outcome in 48 patients with unruptured intracranial saccular aneurysms: a prospective consecutive study. Br J Neurosurg. 1987;1:47–52.CrossRefGoogle Scholar
  7. 7.
    Etminan N, Rinkel GJ. Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol. 2016;12:699–713.  https://doi.org/10.1038/nrneurol.2016.150.CrossRefPubMedGoogle Scholar
  8. 8.
    Hokari M, Isobe M, Imai T, Chiba Y, Iwamoto N, Isu T. The impact of atherosclerotic factors on cerebral aneurysm is location dependent: aneurysms in stroke patients and healthy controls. J Stroke Cerebrovasc Dis. 2014;23:2301–7.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.04.019.CrossRefPubMedGoogle Scholar
  9. 9.
    Iniaghe LO, Krafft PR, Klebe DW, Omogbai EKI, Zhang JH, Tang J. Dimethyl fumarate confers neuroprotection by casein kinase 2 phosphorylation of Nrf2 in murine intracerebral hemorrhage. Neurobiol Dis. 2015;82:349–58.  https://doi.org/10.1016/j.nbd.2015.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8.CrossRefGoogle Scholar
  11. 11.
    Kosierkiewicz TA, Factor SM, Dickson DW. Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J Neuropathol Exp Neurol. 1994;53:399–406.CrossRefGoogle Scholar
  12. 12.
    Kramer T, Grob T, Menzel L, Hirnet T, Griemert E, Radyushkin K, Thal SC, Methner A, Schaefer MKE. Dimethyl fumarate treatment after traumatic brain injury prevents depletion of antioxidative brain glutathione and confers neuroprotection. J Neurochem. 2017;143(5):523–33.  https://doi.org/10.1111/jnc.14220.CrossRefPubMedGoogle Scholar
  13. 13.
    Lin SX, Lisi L, Dello Russo C, Polak PE, Sharp A, Weinberg G, Kalinin S, Feinstein DL. The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro. 2011;3.  https://doi.org/10.1042/AN20100033.CrossRefGoogle Scholar
  14. 14.
    Liu Y, Qiu J, Wang Z, You W, Wu L, Ji C, Chen G. Dimethyl fumarate alleviates early brain injury and secondary cognitive deficits after experimental subarachnoid hemorrhage via activation of Keap1-Nrf2-ARE system. J Neurosurg. 2015;123:915–23.  https://doi.org/10.3171/2014.11.JNS132348.CrossRefPubMedGoogle Scholar
  15. 15.
    Long X, Bell RD, Gerthoffer WT, Zlokovic BV, Miano JM. Myocardin is sufficient for a smooth muscle-like contractile phenotype. Arterioscler Thromb Vasc Biol. 2008;28:1505–10.  https://doi.org/10.1161/atvbaha.108.166066.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mack CP, Thompson MM, Lawrenz-Smith S, Owens GK. Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Circ Res. 2000;86:221–32.CrossRefGoogle Scholar
  17. 17.
    Manabe I, Owens GK. CArG elements control smooth muscle subtype-specific expression of smooth muscle myosin in vivo. J Clin Invest. 2001;107:823–34.  https://doi.org/10.1172/jci11385.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rincon F, Rossenwasser RH, Dumont A. The epidemiology of admissions of nontraumatic subarachnoid hemorrhage in the United States. Neurosurgery. 2013;73:217–22. ; discussion 212–3.  https://doi.org/10.1227/01.neu.0000430290.93304.33.CrossRefPubMedGoogle Scholar
  19. 19.
    Saveland H, Sonesson B, Ljunggren B, Brandt L, Uski T, Zygmunt S, Hindfelt B. Outcome evaluation following subarachnoid hemorrhage. J Neurosurg. 1986;64:191–6.  https://doi.org/10.3171/jns.1986.64.2.0191.CrossRefPubMedGoogle Scholar
  20. 20.
    Sawyer DM, Amenta PS, Medel R, Dumont AS. Inflammatory mediators in vascular disease: identifying promising targets for intracranial aneurysm research. Mediat Inflamm. 2015;2015:896283.  https://doi.org/10.1155/2015/896283.CrossRefGoogle Scholar
  21. 21.
    Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC, Isakson B, Randolph GJ, Owens GK. Corrigendum: KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2016;22:217.  https://doi.org/10.1038/nm0216-217a.CrossRefPubMedGoogle Scholar
  22. 22.
    Starke RM, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez F, Hasan DM, Rosenwasser RH, Owens GK, Koch WJ, Dumont AS. Cigarette smoke modulates vascular smooth muscle phenotype: implications for carotid and cerebrovascular disease. PLoS One. 2013;8:e71954.  https://doi.org/10.1371/journal.pone.0071954.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res. 2013;10:247–55.CrossRefGoogle Scholar
  24. 24.
    Starke RM, Chalouhi N, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Wada K, Shimada K, Hasan DM, Greig NH, Owens GK, Dumont AS. Critical role of TNF-alpha in cerebral aneurysm formation and progression to rupture. J Neuroinflammation. 2014;11:77.  https://doi.org/10.1186/1742-2094-11-77.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Starke RM, Thompson JW, Ali MS, Pascale CL, Martinez Lege A, Ding D, Chalouhi N, Hasan DM, Jabbour P, Owens GK, Toborek M, Hare JM, Dumont AS. Cigarette smoke initiates oxidative stress-induced cellular phenotypic modulation leading to cerebral aneurysm pathogenesis. Arterioscler Thromb Vasc Biol. 2018;38(3):610–21.  https://doi.org/10.1161/atvbaha.117.310478.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International Stroke Incidence Collaboration. Stroke. 1997;28:491–9.CrossRefGoogle Scholar
  27. 27.
    Sun Q, Taurin S, Sethakorn N, Long X, Imamura M, Wang DZ, Zimmer WE, Dulin NO, Miano JM. Myocardin-dependent activation of the CArG box-rich smooth muscle gamma-actin gene: preferential utilization of a single CArG element through functional association with the NKX3.1 homeodomain protein. J Biol Chem. 2009;284:32582–90.  https://doi.org/10.1074/jbc.M109.033910.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yao Y, Miao W, Liu Z, Han W, Shi K, Shen Y, Li H, Liu Q, Fu Y, Huang D, Shi FD. Dimethyl fumarate and monomethyl fumarate promote post-ischemic recovery in mice. Transl Stroke Res. 2016;7:535–47.  https://doi.org/10.1007/s12975-016-0496-0.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yoshida T, Sinha S, Dandre F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang DZ, Olson EN, Owens GK. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circ Res. 2003;92:856–64.  https://doi.org/10.1161/01.res.0000068405.49081.09.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alejandra N. Martinez
    • 1
  • Crissey L. Pascale
    • 1
  • Peter S. Amenta
    • 1
  • Rachel Israilevich
    • 1
  • Aaron S. Dumont
    • 1
    Email author
  1. 1.Department of NeurosurgeryTulane Center for Clinical Neurosciences, Tulane University School of MedicineNew OrleansUSA

Personalised recommendations