Advertisement

The PERK Pathway Plays a Neuroprotective Role During the Early Phase of Secondary Brain Injury Induced by Experimental Intracerebral Hemorrhage

  • Juyi Zhang
  • Peng Zhang
  • Chengjie Meng
  • Baoqi Dang
  • Haiying Li
  • Haitao Shen
  • Zhong Wang
  • Xiang LiEmail author
  • Gang Chen
Chapter
Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA, volume 127)

Abstract

The protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway, which is a branch of the unfolded protein response, participates in a range of pathophysiological processes of neurological diseases. However, few studies have investigated the role of the PERK in intracerebral hemorrhage (ICH). The present study evaluated the role of the PERK pathway during the early phase of ICH-induced secondary brain injury (SBI) and its potential mechanisms. An autologous whole blood ICH model was established in rats, and cultured primary cortical neurons were treated with oxyhemoglobin to mimic ICH in vitro. We found that levels of phosphorylated alpha subunit of eukaryotic translation initiation factor 2 (p-eIF2α) and activating transcription factor 4 (ATF4) increased significantly and peaked at 12 h during the early phase of the ICH. To further elucidate the role of the PERK pathway, we assessed the effects of the PERK inhibitor, GSK2606414, and the eIF2α dephosphorylation antagonist, salubrinal, at 12 h after ICH both in vivo and in vitro. Inhibition of PERK with GSK2606414 suppressed the protein levels of p-eIF2α and ATF4, resulting in increase of transcriptional activator CCAAT/enhancer-binding protein homologous protein (CHOP) and caspase-12, which promoted apoptosis and reduced neuronal survival. Treatment with salubrinal yielded opposite results, which suggested that activation of the PERK pathway could promote neuronal survival and reduce apoptosis. In conclusion, the present study has demonstrated the neuroprotective effects of the PERK pathway during the early phase of ICH-induced SBI. These findings highlight the potential value of PERK pathway as a therapeutic target for ICH.

Keywords

Intracerebral hemorrhage Endoplasmic reticulum stress Unfolded protein response PERK pathway Neuroprotection 

Notes

Acknowledgments

This work was supported by the Project of Jiangsu Provincial Medical Innovation Team (No. CXTDA2017003), Jiangsu Provincial Medical Youth Talent (No. QNRC2016728), Suzhou Key Medical Centre (No. Szzx201501), Scientific Department of Jiangsu Province (No. BE2017656), Suzhou Government (No. SYS201608 and LCZX201601), Jiangsu Province (No. 16KJB320008), and Zhangjiagang Science and Technology Pillar Program (ZKS1712).

Conflict of Interest: We declare that we have no conflicts of interest.

References

  1. 1.
    van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–76.CrossRefGoogle Scholar
  2. 2.
    Wilkinson DA, Pandey AS, Thompson BG, Keep RF, Hua Y, Xi G. Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology. 2017;Google Scholar
  3. 3.
    Niu M, Dai X, Zou W, Yu X, Teng W, Chen Q, Sun X, Yu W, Ma H, Liu P. Autophagy, endoplasmic reticulum stress and the unfolded protein response in intracerebral hemorrhage. Transl Neurosci. 2017;8(1)Google Scholar
  4. 4.
    Begum G, Harvey L, Dixon CE, Sun D. ER stress and effects of DHA as an ER stress inhibitor. Transl Stroke Res. 2013;4(6):635–42.CrossRefGoogle Scholar
  5. 5.
    Nakka VP, Prakash-babu P, Vemuganti R. Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: potential therapeutic targets for acute CNS injuries. Mol Neurobiol. 2016;53(1):532–44.CrossRefGoogle Scholar
  6. 6.
    Halliday M, Hughes D, Mallucci GR. Fine-tuning PERK signaling for neuroprotection. J Neurochem. 2017;Google Scholar
  7. 7.
    Wang Y, Mao L, Zhang L, Zhang L, Yang M, Zhang Z, Li D, Fan C, Sun B. Adoptive regulatory T-cell therapy attenuates subarachnoid hemorrhage-induced cerebral inflammation by suppressing TLR4/NF-B signaling pathway. Curr Neurovasc Res. 2016;13(2):121–6.CrossRefGoogle Scholar
  8. 8.
    Choi SK, Lim M, Byeon SH, Lee YH. Inhibition of endoplasmic reticulum stress improves coronary artery function in the spontaneously hypertensive rats. Sci Rep. 2016;6:31925.PubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L, Tan X, Ye LB, Xiao J. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol. 2015;51(3):1343–52.CrossRefGoogle Scholar
  10. 10.
    Shen H, Pan XD, Zhang J, Zeng YQ, Zhou M, Yang LM, Ye B, Dai XM, Zhu YG, Chen XC. Endoplasmic reticulum stress induces the early appearance of pro-apoptotic and anti-apoptotic proteins in neurons of five familial alzheimer's disease mice. Chin Med J. 2016;129(23):2845–52.PubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ikram MA, Wieberdink RG, Koudstaal PJ. International epidemiology of intracerebral hemorrhage. Curr Atheroscler Rep. 2012;14(4):300–6.PubMedCentralCrossRefGoogle Scholar
  12. 12.
    Morotti A, Goldstein JN. Diagnosis and management of acute intracerebral hemorrhage. Emerg Med Clin North Am. 2016;34(4):883–99.PubMedCentralCrossRefGoogle Scholar
  13. 13.
    Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, Li WH, Heerding DA, Minthorn E, Mencken T, Atkins C, Liu Q, Rabindran S, Kumar R, Hong X, Goetz A, Stanley T, Taylor JD, Sigethy SD, Tomberlin GH, Hassell AM, Kahler KM, Shewchuk LM, Gampe RT. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 2012;55(16):7193–207.CrossRefGoogle Scholar
  14. 14.
    Scheper W, Hoozemans JJ. A new PERKspective on neurodegeneration. Sci Transl Med. 2013;5(206):206fs37.CrossRefGoogle Scholar
  15. 15.
    Rubovitch V, Barak S, Rachmany L, Goldstein RB, Zilberstein Y, Pick CG. The neuroprotective effect of salubrinal in a mouse model of traumatic brain injury. NeuroMolecular Med. 2015;17(1):58–70.CrossRefGoogle Scholar
  16. 16.
    Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005;307(5711):935–9.CrossRefGoogle Scholar
  17. 17.
    Deinsberger W, Vogel J, Kuschinsky W, Auer LM, Boker DK. Experimental intracerebral hemorrhage: description of a double injection model in rats. Neurol Res. 1996;18(5):475–7.CrossRefGoogle Scholar
  18. 18.
    Hu M, Luo Q, Alitongbieke G, Chong S, Xu C, Xie L, Chen X, Zhang D, Zhou Y, Wang Z, Ye X, Cai L, Zhang F, Chen H, Jiang F, Fang H, Yang S, Liu J, Diaz-Meco MT, Su Y, Zhou H, Moscat J, Lin X, Zhang XK. Celastrol-induced Nur77 interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy. Mol Cell. 2017;66(1):141–153 e6.PubMedCentralCrossRefGoogle Scholar
  19. 19.
    Anuncibay-Soto B, Perez-Rodriguez D, Santos-Galdiano M, Font E, Regueiro-Purrinos M, Fernandez-Lopez A. Post-ischemic salubrinal treatment results in a neuroprotective role in global cerebral ischemia. J Neurochem. 2016;138(2):295–306.CrossRefGoogle Scholar
  20. 20.
    Shen H, Chen Z, Wang Y, Gao A, Li H, Cui Y, Zhang L, Xu X, Wang Z, Chen G. Role of neurexin-1beta and neuroligin-1 in cognitive dysfunction after subarachnoid hemorrhage in rats. Stroke. 2015;46(9):2607–15.PubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wang Z, Zhou F, Dou Y, Tian X, Liu C, Li H, Shen H, Chen G. Melatonin alleviates intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, DNA damage, and mitochondria injury. Transl Stroke Res. 2018;9(1):74–91.CrossRefGoogle Scholar
  22. 22.
    Pacifici M, Peruzzi F. Isolation and culture of rat embryonic neural cells: a quick protocol. J Vis Exp. 2012;(63):e3965.Google Scholar
  23. 23.
    Wang Z, Chen Z, Yang J, Yang Z, Yin J, Zuo G, Duan X, Shen H, Li H, Chen G. Identification of two phosphorylation sites essential for annexin A1 in blood-brain barrier protection after experimental intracerebral hemorrhage in rats. J Cereb Blood Flow Metab. 2017;37(7):2509–25.CrossRefGoogle Scholar
  24. 24.
    Jiang X, Wei Y, Zhang T, Zhang Z, Qiu S, Zhou X, Zhang S. Effects of GSK2606414 on cell proliferation and endoplasmic reticulum stress associated gene expression in retinal pigment epithelial cells. Mol Med Rep. 2017;15(5):3105–10.CrossRefGoogle Scholar
  25. 25.
    Sokka AL, Putkonen N, Mudo G, Pryazhnikov E, Reijonen S, Khiroug L, Belluardo N, Lindholm D, Korhonen L. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci. 2007;27(4):901–8.CrossRefGoogle Scholar
  26. 26.
    Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, Chen G. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9(1):66.PubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cui Y, Duan X, Li H, Dang B, Yin J, Wang Y, Gao A, Yu Z, Chen G. Hydrogen sulfide ameliorates early brain injury following subarachnoid hemorrhage in rats. Mol Neurobiol. 2016;53(6):3646–57.CrossRefGoogle Scholar
  28. 28.
    Zhu HT, Bian C, Yuan JC, Chu WH, Xiang X, Chen F, Wang CS, Feng H, Lin JK. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-kappaB signaling pathway in experimental traumatic brain injury. J Neuroinflammation. 2014;11:59.PubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation. 2012;9:46.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13(10):1211–33.CrossRefGoogle Scholar
  31. 31.
    Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol. 2002;18:575–99.CrossRefGoogle Scholar
  32. 32.
    Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. 2013;12(1):105–18.CrossRefGoogle Scholar
  33. 33.
    Saito A, Cai L, Matsuhisa K, Ohtake Y, Kaneko M, Kanemoto S, Asada R, Imaizumi K. Neuronal activity-dependent local activation of dendritic unfolded protein response promotes expression of brain-derived neurotrophic factor in cell soma. J Neurochem. 2018;144(1):35–49.CrossRefGoogle Scholar
  34. 34.
    Wang P, Li J, Tao J, Sha B. The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization. J Biol Chem. 2018;293(11):4110–21.CrossRefGoogle Scholar
  35. 35.
    Lin JH, Li H, Zhang Y, Ron D, Walter P. Divergent effects of PERK and IRE1 signaling on cell viability. PLoS One. 2009;4(1):e4170.PubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mercado G, Castillo V, Soto P, Lopez N, Axten JM, Sardi SP, Hoozemans JJM, Hetz C. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson's disease. Neurobiol Dis. 2018;112:136–48.CrossRefGoogle Scholar
  37. 37.
    Wang R, Sun DZ, Song CQ, Xu YM, Liu W, Liu Z, Dong XS. Eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha) inhibitor salubrinal attenuates paraquat-induced human lung epithelial-like A549 cell apoptosis by regulating the PERK-eIF2alpha signaling pathway. Toxicol In Vitro. 2018;46:58–65.CrossRefGoogle Scholar
  38. 38.
    Xiang C, Wang Y, Zhang H, Han F. The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis. 2017;22(1):1–26.CrossRefGoogle Scholar
  39. 39.
    Penaranda Fajardo NM, Meijer C, Kruyt FA. The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma. Biochem Pharmacol. 2016;118:1–8.CrossRefGoogle Scholar
  40. 40.
    Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. Biochim Biophys Acta. 2013;1833(12):3507–17.CrossRefGoogle Scholar
  41. 41.
    Han K, Hassanzadeh S, Singh K, Menazza S, Nguyen T T, Stevens M V, Nguyen A, San H, Anderson S A, Lin Y, Zou J, Murphy E, and Sack M N (2017) Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress. Sci Rep 7(1):2093.Google Scholar
  42. 42.
    Li XF, Zhang Z, Chen ZK, Cui ZW, Zhang HN. Piezo1 protein induces the apoptosis of human osteoarthritis-derived chondrocytes by activating caspase-12, the signaling marker of ER stress. Int J Mol Med. 2017;40(3):845–53.PubMedCentralCrossRefGoogle Scholar
  43. 43.
    Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664–6.CrossRefGoogle Scholar
  44. 44.
    Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 2002;16(11):1345–55.PubMedCentralCrossRefGoogle Scholar
  45. 45.
    Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11(4):381–9.CrossRefGoogle Scholar
  46. 46.
    Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA. Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem. 2006;281(23):16016–24.CrossRefGoogle Scholar
  47. 47.
    Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol. 2000;150(4):887–94.PubMedCentralCrossRefGoogle Scholar
  48. 48.
    Serrano-Negron JE, Zhang Z, Rivera-Ruiz AP, Banerjee A, Romero-Nutz EC, Sanchez-Torres N, Baksi K, Banerjee DK. Tunicamycin-induced ER stress in breast cancer cells neither expresses GRP78 on the surface nor secretes it into the media. Glycobiology. 2018;28(2):61–8.PubMedCentralCrossRefGoogle Scholar
  49. 49.
    Schmeits PC, Katika MR, Peijnenburg AA, van Loveren H, Hendriksen PJ. DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer thapsigargin based on comparative gene expression profiling in Jurkat T cells. Toxicol Lett. 2014;224(3):395–406.CrossRefGoogle Scholar
  50. 50.
    Garton T, Keep RF, Wilkinson DA, Strahle JM, Hua Y, Garton HJ, Xi G. Intraventricular hemorrhage: the role of blood components in secondary injury and hydrocephalus. Transl Stroke Res. 2016;7(6):447–51.CrossRefGoogle Scholar
  51. 51.
    Nakka VP, Gusain A, Raghubir R. Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox Res. 2010;17(2):189–202.CrossRefGoogle Scholar
  52. 52.
    Yang W, Paschen W. Unfolded protein response in brain ischemia: A timely update. J Cereb Blood Flow Metab. 2016;36(12):2044–50.PubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P. IRE1 signaling affects cell fate during the unfolded protein response. Science. 2007;318(5852):944–9.PubMedCentralCrossRefGoogle Scholar
  54. 54.
    Valenzuela V, Onate M, Hetz C, Court FA. Injury to the nervous system: a look into the ER. Brain Res. 2016;1648(Pt B):617–25.CrossRefGoogle Scholar
  55. 55.
    Meng C, Zhang J, Dang B, Li H, Shen H, Li X, Wang Z. PERK pathway activation promotes intracerebral hemorrhage induced secondary brain injury by inducing neuronal apoptosis both in vivo and in vitro. Front Neurosci. 2018;12:111.PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juyi Zhang
    • 1
  • Peng Zhang
    • 1
  • Chengjie Meng
    • 1
    • 2
  • Baoqi Dang
    • 3
  • Haiying Li
    • 1
  • Haitao Shen
    • 1
  • Zhong Wang
    • 1
  • Xiang Li
    • 1
    Email author
  • Gang Chen
    • 1
  1. 1.Department of Neurosurgery and Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
  2. 2.Department of NeurosurgeryYancheng First People’s HospitalYanchengChina
  3. 3.Department of Rehabilitation MedicineZhangjiagang Hospital of Traditional Chinese MedicineSuzhouChina

Personalised recommendations